193 research outputs found

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Contribution of the carbohydrate-binding ability of Vatairea guianensis lectin to induce edematogenic activity

    Get PDF
    Vatairea guianensis lectin (VGL), Dalbergiae tribe, is a N-acetyl-galactosamine (GalNAc)/Galactose (Gal) lectin previously purified and characterized. In this work, we report its structural features, obtained from bioinformatics tools, and its inflammatory effect, obtained from a rat paw edema model. The VGL model was obtained by homology with the lectin of Vatairea macrocarpa (VML) as template, and we used it to demonstrate the common characteristics of legume lectins, such as the jellyroll motif and presence of a metal-binding site in the vicinity of the carbohydrate-recognition domain (CRD). Protein-ligand docking revealed favorable interactions with N-acetyl-D-galactosamine, D-galactose and related sugars as well as several biologically relevant N- and O-glycans. In vivo testing of paw edema revealed that VGL induces edematogenic effect involving prostaglandins, interleukins and VGL CRD. Taken together, these data corroborate with previous reports showing that VGL interacts with N- and/or O-glycans of molecular targets, particularly in those presenting galactosides in their structure, contributing to the lectin inflammatory effect. © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM

    Determinants of intensive insulin therapeutic regimens in patients with type 1 diabetes: data from a nationwide multicenter survey in Brazil

    Get PDF
    Background: To evaluate the determinants of intensive insulin regimens (ITs) in patients with type 1 diabetes (T1D).Methods: This multicenter study was conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. Data were obtained from 3,591 patients (56.0% female, 57.1% Caucasian). Insulin regimens were classified as follows: group 1, conventional therapy (CT) (intermediate human insulin, one to two injections daily); group 2 (three or more insulin injections of intermediate plus regular human insulin); group 3 (three or more insulin injections of intermediate human insulin plus short-acting insulin analogues); group 4, basal-bolus (one or two insulin injections of long-acting plus short-acting insulin analogues or regular insulin); and group 5, basal-bolus with continuous subcutaneous insulin infusion (CSII). Groups 2 to 5 were considered IT groups.Results: We obtained complete data from 2,961 patients. Combined intermediate plus regular human insulin was the most used therapeutic regimen. CSII was used by 37 (1.2%) patients and IT by 2,669 (90.2%) patients. More patients on IT performed self-monitoring of blood glucose and were treated at the tertiary care level compared to CT patients (p < 0.001). the majority of patients from all groups had HbA1c levels above the target. Overweight or obesity was not associated with insulin regimen. Logistic regression analysis showed that economic status, age, ethnicity, and level of care were associated with IT (p < 0.001).Conclusions: Given the prevalence of intensive treatment for T1D in Brazil, more effective therapeutic strategies are needed for long term-health benefits.Farmanguinhos/Fundacao Oswaldo Cruz/National Health MinistryBrazilian Diabetes SocietyFundacao do Amparo a Pesquisa do Estado do Rio de JaneiroConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estado Rio de Janeiro, Unit Diabet, BR-20551030 Rio de Janeiro, BrazilBaurus Diabet Assoc, São Paulo, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilFed Univ Hosp Porto Alegre, Porto Alegre, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Fed Rio de Janeiro, Rio de Janeiro, BrazilUniv Fed Ceara, Fortaleza, Ceara, BrazilSanta Casa Misericordia, Belo Horizonte, MG, BrazilSanta Casa Misericordia São Paulo, São Paulo, BrazilUniv Fed Amazonas, Manaus, Amazonas, BrazilHosp Geral de Bonsucesso, Rio de Janeiro, BrazilHosp Univ Clementino Fraga Filho IPPMG, Rio de Janeiro, BrazilUniv Hosp São Paulo, São Paulo, BrazilFac Ciencias Med Santa Casa São Paulo, São Paulo, BrazilUniv São Paulo, Inst Crianca, Hosp Clin, São Paulo, BrazilUniv São Paulo, Fac Med Ribeirao Preto, Hosp Clin, Ribeirao Preto, BrazilAmbulatorio Fac Estadual Med Sao Jose Rio Preto, Ribeirao Preto, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilClin Endocrinol Santa Casa Belo Horizonte, Belo Horizonte, MG, BrazilUniv Estadual Londrina, Londrina, BrazilUniv Fed Parana, Hosp Clin, Porto Alegre, RS, BrazilInst Crianca Com Diabet Rio Grande Sul, Rio Grande Do Sul, RS, BrazilGrp Hosp Conceicao, Inst Crianca Com Diabet, Porto Alegre, RS, BrazilHosp Univ Santa Catarina, Florianopolis, SC, BrazilInst Diabet Endocrinol Joinville, Joinville, BrazilHosp Reg Taguatinga, Brasilia, DF, BrazilHosp Geral Goiania, Goiania, Go, BrazilCtr Diabet & Endocrinol Estado Bahia, Goiania, Go, BrazilUniv Fed Maranhao, Sao Luis, BrazilCtr Integrado Diabet & Hipertensao Ceara, Fortaleza, Ceara, BrazilUniv Fed Sergipe, Aracaju, BrazilHosp Univ Alcides Carneiro, Campina Grande, BrazilHosp Univ Joao de Barros Barreto, Belem, Para, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, São Paulo, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilWeb of Scienc

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore