10 research outputs found

    Multigene Phylogeny of Choanozoa and the Origin of Animals

    Get PDF
    Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals

    Genome Evolution of a Tertiary Dinoflagellate Plastid

    Get PDF
    The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata

    Genome Fragmentation Is Not Confined to the Peridinin Plastid in Dinoflagellates

    Get PDF
    When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates

    Southern blot analysis of DNA treated with Topoisomerase IV.

    No full text
    <p>The filter contains pooled CsCl fractions of <i>K. veneficum</i> DNA, undigested (−), treated with Topoisomerase IV (To), and digested with EcoRI (E). The hybridization probe is identical to probe 4 of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038809#pone-0038809-g003" target="_blank">Figure 3</a>, containing the highly conserved motif 2 and a partial sequence of motif 1. The location of the plastid genome is indicated by green shade above the lanes.</p

    Schematic overview of rbcL sequences found in <i>K.veneficum</i>.

    No full text
    <p>Sequences are either library clones or PCR-clones generated with outwards directed primers. A. Sequences containing a short rbcL gene fragment, corresponding to the first 47 amino acids. B. Sequences containing the incomplete rbcL gene sequences, corresponding to amino acids 1–306. C. Sequence containing the complete rbcL gene. A copy number analysis of pyrosequencing reads mapping to the rbcL gene is displayed below. The analysis shows number of read occurences per base of the cloned rbcL sequence.</p

    Schematic overview of dnaK sequences found in <i>K.veneficum</i>.

    No full text
    <p>PCR-clones generated with outwards directed primers; library clone contigs; and plastid genome contigs assembled from pyrosequencing reads. A. Partial dnaK sequences found in <i>K.veneficum</i>. B. The complete gene (aa 623) from <i>E. huxleyi</i>. C. Southern blot analysis of dnaK. Hybridization was performed with filter II (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038809#pone-0038809-g003" target="_blank">Figure 3</a>). The filter II was hybridized with a radiolabelled dnaK probe generated by PCR, using inwards-directed primers. The probe contains the coding sequence for amino acids 145–437.</p

    The genome sequence of Atlantic cod reveals a unique immune system

    Get PDF
    Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC)?II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC?II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC?I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC?II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates
    corecore