141 research outputs found

    Integrated medical and behavioral laboratory measurement system engineering analysis and laboratory specification

    Get PDF
    Site selection, program planning, cost and design studies for support of the IMBLMS program were investigated. Accomplishments are reported for the following areas: analysis of responses to site selection criteria, space-oriented biotechnology, life sciences payload definition, and program information transfer

    Classification of Web Forum Entries

    Get PDF
    Diplomová práce se zabývá klasifikací textu v prostředí internetu. Jsou v ní popsány dostupné moderní metody pro klasifikaci a následné rozdělení textových příspěvků. Součástí diplomové práce je implementace Bayesova naivního algoritmu a klasifikátoru s využitím neuronových sítí. Vybrané metody jsou zde porovnány vzhledem k jejich chybovosti či jiným klasifikačním vlastnostem.This thesis is dealing text ranking on the internet background. There are described available methods for classification and splitting of the text reports. The part of this thesis is implementation of Bayes naive algorithm and classifier using neuron nets. Selected methods are compared considering their error rate or other ranking features.

    Ice streams in the Laurentide Ice Sheet: identification, characteristics and comparison to modern ice sheets

    Get PDF
    This paper presents a comprehensive review and synthesis of ice streams in the Laurentide Ice Sheet (LIS) based on a new mapping inventory that includes previously hypothesised ice streams and includes a concerted effort to search for others from across the entire ice sheet bed. The inventory includes 117 ice streams, which have been identified based on a variety of evidence including their bedform imprint, large-scale geomorphology/topography, till properties, and ice rafted debris in ocean sediment records. Despite uncertainty in identifying ice streams in hard bedrock areas, it is unlikely that any major ice streams have been missed. During the Last Glacial Maximum, Laurentide ice streams formed a drainage pattern that bears close resemblance to the present day velocity patterns in modern ice sheets. Large ice streams had extensive onset zones and were fed by multiple tributaries and, where ice drained through regions of high relief, the spacing of ice streams shows a degree of spatial self-organisation which has hitherto not been recognised. Topography exerted a primary control on the location of ice streams, but there were large areas along the western and southern margin of the ice sheet where the bed was composed of weaker sedimentary bedrock, and where networks of ice streams switched direction repeatedly and probably over short time scales. As the ice sheet retreated onto its low relief interior, several ice streams show no correspondence with topography or underlying geology, perhaps facilitated by localised build-up of pressurised subglacial meltwater. They differed from most other ice stream tracks in having much lower length-to-width ratios and have no modern analogues. There have been very few attempts to date the initiation and cessation of ice streams, but it is clear that ice streams switched on and off during deglaciation, rather than maintaining the same trajectory as the ice margin retreated. We provide a first order estimate of changes in ice stream activity during deglaciation and show that around 30% of the margin was drained by ice streams at the LGM (similar to that for present day Antarctic ice sheets), but this decreases to 15% and 12% at 12 cal ka BP and 10 cal ka BP, respectively. The extent to which these changes in the ice stream drainage network represent a simple and predictable readjustment to a changing mass balance driven by climate, or internal ice dynamical feedbacks unrelated to climate (or both) is largely unknown and represents a key area for future work to address

    In memoriam - Dr. Marin Brničević

    Get PDF

    In memoriam - Dr. Marin Brničević

    Get PDF

    Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming

    Get PDF
    The shift in climate that occurred between the Last Glacial Maximum (LGM) and the Early Holocene (ca. 18–12 kyr BP) displayed rates of temperature increase similar to present-day warming trends. The most rapid recorded changes in temperature occurred during the abrupt climate oscillations known as the Bølling–Allerød interstadial (14.7–12.9 kyr BP) and the Younger Dryas stadial (12.9–11.7 kyr BP). Reconstructing ice sheet dynamics during these climate oscillations provides the opportunity to assess long-term ice sheet evolution in reaction to a rapidly changing climate. Here, we use glacial geomorphological inversion methods (flowsets) to reconstruct the ice flow dynamics and the marginal retreat pattern of the southwestern sector of the Laurentide Ice Sheet (SWLIS). We combine our reconstruction with a recently compiled regional deglaciation chronology to depict ice flow dynamics that encompass the time period from pre-LGM to the Early Holocene. Our reconstruction portrays three macroscale reorganizations in the orientation and dynamics of ice streaming followed by regional deglaciation associated with rapid warming during the Bølling–Allerød interstadial. Initial westward flow is documented, likely associated with an early set of ice streams that formed during the advance to the LGM. During the LGM ice streaming displays a dominant north to south orientation. Ice sheet thinning at ∼15 ka is associated with a macroscale reorganization in ice stream flow, with a complex of ice streams recording south-eastward flow. A second macroscale reorganization in ice flow is then observed at ∼14 ka, in which southwestern ice flow is restricted to the Hay, Peace, Athabasca, and Churchill river lowlands. Rates of ice sheet retreat then slowed considerably during the Younger Dryas stadial; at this time, the ice margin was situated north of the Canadian Shield boundary and ice flow continued to be sourced from the northeast. Resulting from these changes in ice sheet dynamics, we recognize a three-part pattern of deglacial landform zonation within the SWLIS characterized by active ice margin recession, stagnation and downwasting punctuated by local surging (terrestrial ice sheet collapse): the outer deglacial zone contains large recessional moraines aligned with the direction of active ice margin retreat; the intermediate deglacial zone contains large regions of hummocky and stagnation terrain, in some areas crosscut by the signature of local surges, reflecting punctuated stagnation and downwasting; and the inner deglacial zone contains inset recessional moraines demarcating progressive regional ice margin retreat. We attribute these macroscale changes in ice flow geometry and associated deglacial behaviour to external climatic controls during the Bølling–Allerød and Younger Dryas but also recognize the role of internal (glaciological, lithological and topographic) controls in SWLIS dynamics

    The glacial geomorphology of the western cordilleran ice sheet and Ahklun ice cap, Southern Alaska

    Get PDF
    During the late Wisconsinan, Southern Alaska was covered by two large ice masses; the western arm of the Cordilleran Ice Sheet and the Ahklun Mountains Ice Cap. Compared to the other ice sheets that existed during this period (e.g. the British-Irish, Laurentide and Fennoscandian ice sheets), little is known about the geomorphology they left behind. This limits our understanding of their flow pattern and retreat. Here we present systematic mapping of the glacial geomorphology of the two ice masses which existed in Southern Alaska. Due to spatially variable data availability, mapping was conducted using digital elevation models and satellite images of varying resolutions. Offshore, we map the glacial geomorphology using available bathymetric data. For the first time, we document >5000 subglacial lineations, recording ice flow direction. The distribution of moraines is presented, as well as features related to glacial meltwater drainage patterns (eskers and meltwater channels). Prominent troughs were also mapped on Alaska's continental shelf. This map provides the data required for a glacial inversion of these palaeo-ice masses

    Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet

    Get PDF
    Landforms left behind by the last Scandinavian Ice Sheet (SIS) offer an opportunity to investigate controls governing ice sheet dynamics. Terrestrial sectors of the ice sheet have received considerable attention from landform and stratigraphic investigations. In contrast, despite its geographical importance, the Baltic Sea remains poorly constrained due to limitations in bathymetric data. Both ice-sheet-scale investigations and regional studies at the southern periphery of the SIS have considered the Baltic depression to be a preferential route for ice flux towards the southern ice margin throughout the last glaciation. During the deglaciation the Baltic depression hosted the extensive Baltic Ice Lake, which likely exerted a considerable control on ice dynamics. Here we investigate the Baltic depression using newly available bathymetric data and peripheral topographic data. These data reveal an extensive landform suite stretching from Denmark in the west to Estonia in the east and from the southern European coast to the Åland Sea, comprising an area of 0.3 million km2. We use these landforms to reconstruct aspects of the ice dynamic history of the Baltic sector of the ice sheet. Landform evidence indicates a complex retreat pattern that changes from lobate ice margins with splaying lineations to parallel mega-scale glacial lineations (MSGLs) in the deeper depressions of the Baltic Basin. Ice margin still-stands on underlying geological structures indicate the likely importance of pinning points during deglaciation, resulting in a stepped retreat signal. Over the span of the study area we identify broad changes in the ice flow direction, ranging from SE–NW to N–S and then to NW–SE. MSGLs reveal distinct corridors of fast ice flow (ice streams) with widths of 30 km and up to 95 km in places, rather than the often-interpreted Baltic-wide (300 km) accelerated ice flow zone. These smaller ice streams are interpreted as having operated close behind the ice margin during late stages of deglaciation. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and northern Bothnian sources. We anticipate that our landform mapping and interpretations may be used as a framework for more detailed empirical studies by identifying targets to acquire high-resolution bathymetry and sediment cores and also for comparison with numerical ice sheet modelling.</p

    The prevalence of pemphigus chr. vulgaris

    Get PDF
    Autori su na osnovu pregledane dokumentacije hospitaliziranih bolesnika na Odjelu za kožne i spolne bolesti Opće bolnice u Osijeku prikazali učestalost kroničnog vulgarnog pemfigusa, u periodu od 1970 do 1985. godine. Dobiveni rezultat, koji iznosi 0,526%, autori uspoređuju s postotkom oboljelih od drugih dermatoza koji su liječeni na Odjelu u istom periodu, te zaklju­čuju da je kronični vulgarni pemfigus vrlo rijetka bolest.The authors evaluated the documents of all hospitalised patients at the Dermatology and Venerology Department of the General Hospital Osijek treated during the period from 1970-1985. The results showed prevalence of Pemphigus chr. vulgaris of only 0.526%. It can be concluded that the prevalence of Pemphigus chr. vulgaris is very low, in comparison to other dermatoses treated at our Department within the same period

    Ice-margin and meltwater dynamics during the mid-Holocene in the Kangerlussuaq area of west Greenland

    Get PDF
    Land-terminating parts of the west Greenland ice sheet have exhibited highly dynamic meltwater regimes over the last few decades including episodes of extremely intense runoff driven by ice surface ablation, ponding of meltwater in an increasing number and size of lakes, and sudden outburst floods, or 'jökulhlaups', from these lakes. However, whether this meltwater runoff regime is unusual in a Holocene context has not been questioned. This study assembled high-resolution topographical data, geological and landcover data, and produced a glacial geomorphological map covering ~1200 km2. Digital analysis of the landforms reveals a mid-Holocene land-terminating ice margin that was predominantly cold-based. This ice margin underwent sustained active retreat but with multiple minor advances. Over c. 1000 years meltwater runoff became impounded within numerous and extensive proglacial lakes and there were temporary connections between some of these lakes via spillways. The ice-dams of some of these lakes had several quasi-stable thicknesses. Meltwater was apparently predominantly from supraglacial sources although some distributary palaeochannel networks and some larger bedrock palaeochannels most likely relate to mid-Holocene subglacial hydrology. In comparison to the geomorphological record at other Northern Hemisphere ice-sheet margins the depositional landforms in this study area are few in number and variety and small in scale, most likely due to a restricted sediment supply. They include perched fans and deltas and perched braidplain terraces. Overall, meltwater sourcing, routing and the proglacial runoff regime during the mid-Holocene in this land-terminating part of the ice sheet was spatiotemporally variable, but in a manner very similar to that of the present day
    corecore