$N 73.26894 /$ $R-133661$

INTEGRATED MEDICAL AND BEHAVIORAL LABORATORY MEASUREMENT SYSTEM ENGINEERING ANALYSIS AND LABORATORY VERIFICATION

CONTRACT NAS 9-11756

CASE FILE COPY

HOUSTON, TEXAS

INTEGRATED MEDICAL AND BEHAVIORAL LABORATORY
MEASUREMENT SYSTEM
ENGINEERING ANALYSIS AND LABORATORY VERIFICATION

CONTRACT NAS 9-11756

APPROVED BY

APPROVED BY

APPROVED BY
$\frac{\text { Dlounant Se Canto }}{\text { Norman Belasco, Chief, IMBLMS Program Office }}$

Submitted to:
IMBLMS PROGRAM OFFICE
BIOENGINEERING SYSTEMS DIVISION
LIFE SCIENCES DIRECTORATE
JOHNSON SPACE CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

THE BOEING COMPANY
June. 30, 1973
Section Page
TITLE PAGE
TABLE OF CONTENTS i
ABBREVIATIONS AND ACRONYMS ii
FOREWORD v
SUMMARY vi
REFERENCES vii
1.0 INTRODUCTION, OBJECTIVES, AND REPORTS 1
1.1 INTRODUCTION 1
1.2 OBJECTIVES 1
1.3 REPORTS 1
2.0 SUMMARY OF ACCOMPLISHMENTS 3
2.1 TASK 1.1 - COMPILE AND ANALYZE TECHNICAL DATA 3
2.2 TASK 1.2 - SPACE-ORIENTED BIOTECHNOLOGY 5
2.3 TASK 1.3 - LIFE SCIENCES PAYLOAD DEFINITION 7
2.4 TASK 1.4 - PROGRAM INFORMATION TRANSFER 8
ATTACHMENT I EXHIBIT C, STATEMENT OF WORK I-1
ATTACHMENT II TASK 1.l PRODUCTS - Table of Contents II-2
TASK-1.2-PRODUCTS -- Table-of-Contents II-3
TASK 1.3 PRODUCTS - Table of Contents II-3

ABBREVIATIONS AND ACRONYMS

ADP	Automated Data Processing
AHSFU	Area Health Services Field Unit
AMA	American Medical Association
ARC	Ames Research Center
CDR	Critical Design Review
CHM	Community Health Medic
CVT	Concept Verification Testing
DVTU	Design Verification Test Unit
EC/LSPS	Environmental Control/Life Support Protective System
EC/LSS	Environmental Control/Life Support System
ECS	Environmental Control System
EVA	Extravehicular Activity
FBB	Functional Breadboard
FCC	Federal Communications Commission
FET	Field Effects Transistor
FPE	Functional Program Element
FY	Fiscal Year
GD/C	General Dynamics/Convair
GFE	Government Furnished Equipment
HEW	U.S. Department of Health, Education, and Welfare
HIS	Health Information System
HSMHA	Health Services and Mental Health Administration
HSSCC	Health Services Support Control Center

ICP	Interface Coordination and Planning
IECS	Internal Environmental Control System
IHS	Indian Health Service
IMBLMS	Integrated Medical and Behavioral Laboratory Measurement System
IPO	IMBLMS Program Office
I.V.	Intravenous
JND	Just Noticeable Difference
KFI	Kaiser Foundation International
LEC	Lockheed Electronics Corporation
LHSC	Local Health Services Center
LMSC	Lockheed Missiles and Space Company
LP	Low Pressure
LPN	Licensed Practical Nurse
LSP	Life Sciences Payloads
LSPS or	Life Support \& Protective System
LS/PS	Life Support System
LSS	Mobile Health Services Facility
MHSF	Mobile Health Unit
MHU	Marshall Space Flight Center
MSFC	Modular Space Station
NASA	National Aeronautics and Space Administration
NEC	National Electric Code .. -
ORD	Office of Research and Development
Mal	

ABBREVIATIONS AND ACRONYMS - (Cont'd)

PA	Physician's Assistant
PAM	Portable Ambulance Module
PCS	Principal Coordinating Scientist
PHN	Public Health Nurse
PI	Principal Investigator
PLSS	Portable Life Support System
PM	Project Manager
PRL	Program Requirements Listing
RAM	Research and Applications Module
RFP	Request for Proposal
RN	Registered Nurse
SCC	Support Control Center
SCI	SCI Electronics Incorporated
SOW	Statement of Work
TIRR	Texas Institute for Rehabilitation and Research
UHF	Ultra High Frequency
V	Volts
VHF	Very High Frequency
WBS	Work Breakdown Structure

The activities reported herein were accomplished in accordance with Contract NAS 9-11756, Amendment 5S, and represent a continuation of the IMBLMS Program accomplishments initiated under Contract NAS 9-9456 (IMBLMS FBB Assessment) and NAS 9-10771 (IMBLMS FBB Applications).

The results of the previous contract phases were submitted to NASA by Interim and Final Reports; in accordance with contract requirements. A listing of these submittals is provided under the Reference Section.

Throughout the period of all contract activities excellent professional and technical cooperation has been realized between the IMBLMS Program Office (IPO) and Boeing. The individuals in NASA responsible for these excellent working relationships included Mr. Norman Belasco, Chief, IMBLMS Program Office (Technical Monitor); Sam L. Pool, M.D., IMBLMS Medical Officer; Edward C. Moseley, Ph.D., IMBLMS Information Processing Officer; and Mr. Charley D. Stamps, IMBLMS Contracting Officer.

The contents of this report and attachments present significant results of the effort of The Boeing. Company in accomplishing the tasks of Contract NAS 9-11756, Amendment 5S, (see Work Statement, Attachment I of this report).

The tasks reported herein provided the IPO with engineering, analyses, and health systems technical data of particular value during the IMBLMS (Area Health Services Field Unit [AHSFU]) Program Definition phase. The results of these tasks were used in technical program planning, including test site selection and system configuration definition.

This Final Report summarizes the task products associated with this contract phase and provides an overview of the entire effort. The material is organized to present the specific contract tasks and provide an orderly summary of the results associated with the accomplishment of those tasks.

The studies and analyses conducted indicate that the IMBLMS AHSFU concept will provide a unique contribution to the delivery of health services in remote areas.

REFERENCES

Listed here are significant reports from this contractor's previous periods of performance on this contract (NAS 9-11756) and previous IMBLMS contracts (NAS 9-9456 and NAS 9-10771, IMBLMS FBB Assessment and IMBLMS FBB Applications, respectively) to provide a consolidated record of Boeing work on the IMBLMS Program:

Contract No.	Report Name	Report Date
NAS 9-9456	Interim Report No. 1	April 17, 1970
	Interim Report No. 2	Sept. 30, 1970
	Final Report	Dec. 31, 1970
	Final Report - First Supplement	Feb. 28, 1971
	Final Report - Second Supplement	May 31, 1971
NAS 9-10771	Phase Progress Report No. 1	Jan. 26, 1972
	Phase Progress Report No. 2	April 15, 1972
	Phase Progress Report No. 3	April 15, 1972
	Phase Progress Report No. 4	April 12, 1972
	Final Report	April 15, 1972
NAS 9-11756	Interim Summary Report	Aug. 29, 1972
	Final Report	Nov. 30, 1972

INTRODUCTION
This Final Report covers the Boeing accomplishments on the IMBLMS Engineering Analysis and Verification Contract No. NAS 9-11756, Amendment 5S, during the period from January 1 through June 30, 1973.

During this contract phase, hardware operations were at a minimum and Boeing efforts were mainly directed to supporting the IMBLMS Program activities associated with Phase C, including Operational Test Site Investigations in preparation for site selection, Program Definition, Preliminary Systems Requirements Definition, cost and Preliminary Design studies of the AHSFU System on the selected site. On May 17, 1973, NASA/HEW jointly announced the selection of the Papago Reservation in southern Arizona as the operational test site. The details of the Boeing activities and associated accomplishments have been previousiy submitted to the IMBLMS Program Office. This report summarizes the activities performed during this phase of the contract. Significant results have been included herein as Attachment II.

1.2 OBJECTIVES

The main objective of the Boeing activities during this program phase was to research and compile technical information to be used by the IPO in test site screening, program planning, and technical decision-making during the site selection and systems definition period. Activities included studies and analyses of site candidates, review of systems requirements, identification of critical design factors, and analyses of various system configurations to assist the IPO during this critical phase of IMBLMS Program Planning.

1.3 REPORTS

During the contract period, Boeing. provided the following reports to IPO:

1. Review, study, and analysis reports in the form of engineering and scientific memoranda.
1.3 (Cont'd)
2. Weekly Progress Reports.
3. Monthly Progress Reports.

The medium of technical information transfer utilized was the NASA 2-Way Memo (Form 5027-102 Optional Form 27). Summarized results of reviews, studies, and analyses were attached to the 2-Way Memos to provide correspondence control and tracking/retrieval of technical data. Research material gathered to support these efforts was placed in the IMBLMS Working File upon completion of the task. Twenty-seven such studies, analyses, or technical compilations were provided to IPO during the contract period. The most significant results of these tasks are summarized in this report and are included in Attachment II. Additional technical data sources and references are contained in the IMBLMS Technical File located adjacent to the IMBLMS Program Office.

2.0

2.1 TASK 1.1-COMPILE AND ANALYZE TECHNICAL DATA

Statement of Work requirements, paragraph 1.1-Compile and analyze available technical information and data relating to the IMBLMS Program and make recommendations as to potential problem areas during the design and development of the IMBLMS (Phase C), by:
A. Preparing a technical summary of each subsystem which highlights design features or potential development problems demanding critical assessment.
B. Reviewing detail's of design changes or deviations.
C. Reviewing IMBLMS Program requirements for areas of technical concern.
D. Reviewing critical program documentation for adequacy and completeness.
E. Identifying critical site selection factors and compiling review comments.
F. Reviewing and evaluating long lead time items relating to identifying, selection, and procurement rationale.

Results/Discussion

1. An analysis was performed on "The Responses to Site Selection Criteria" to identify key factors for use by IPO in the AHSFU site selection process. Submittals were reviewed from the following areas:
a. The Papago Tribe/Office of Research and Development of the Indian Health Service (IHS).
b. The Memorial General Hospital (Las Cruces, N.M.).
c. The Williamsport Hospital (Williamsport, Pa.).

This study revealed that many advantages were to be gained by the selection of the Papago Reservation as the AHSFU test site. The major advantages included:
a. A patient population wherein health care delivery by Physician's Assistant (PA) is a legally and ethically accepted fact.
b. An existing patient data base which utilizes automated data processing.
c. The Papago Reservation, which has a total population of approximately 10,000 , provides a discrete entity of patient population, local/Federal Government cooperation, geographic, climatic, and technical factors which tend to insure a valid AHSFU and field test demonstration. Reference Attachment II, Item 1 (HA-60-104, 111, 112, 113, and 114).
2. A cost analysis of the IMBLMS AHSFU system was performed to identify methods of reducing IMBLMS Program costs. IPO provided a list of acceptable possibilities. Of these, three cost reduction options were identified and subsequently implemented in the IMBLMS Program. The options identified included:
a. Selection of a less sophisticated Mobile Health Unit (MHU) to replace the much larger and more complicated Mobile Health Service Facility.
b. Utilization of IHS medical personnel in place of Kaiser Foundation International (KFI) personnel during Part 3 operations.
c. Elimination of redundant and hot standby from the communications system.

Comparative analyses of these and other proposed options were provided to IPO to assist in establishing the technical impact of a modified AHSFU system configuration. Reference Attachment II, Item 2 (HA-60-115 and 118).
3. The Boeing IMBLMS Team participated in several program meetings and reviews including the Contract Kick-off Meeting (Dec. 20, 1972), Preliminary Requirements Review (May 9-10, 1973), and the Preliminary Design Review (June 27-29, 1973). These efforts involved

2.1 (Cont'd)

providing IPO with meeting preparation recommendations, participation in detailed working groups, and the performance of specific action items resulting from these meetings.

An open action item and problem resolution listing was evolved and maintained on a weekly basis to provide IPO with technical tracking and status information.

A significant effort was provided in gathering technical information and data and generating a "checklist" to support the Program Interface and Coordination Meeting held in Tucson (April 26 and 27, 1973) between HEW-IHS/NASA/LMSC... Reference Attachment II, Item 3 (HA-60103, 129, and 123).
4. During the contract period, Boeing personnel performed many technical reviews and analyses of IMBLMS program documentation. The principal product of this task was a detailed critical review of the draft and preliminary versions of the Systems Requirements and the Program Definition Reports, including System Block Diagrams, Flow Charts, Schedules, and Plans. During these reviews, particular emphasis was placed on critical areas including Program Planning and Schedules, Lead Times and Impact, Communications and Data Management, Medical Systems and Equipment. The results of these analyses and reviews were used to help establish an IPO position on acceptance/approval of the associated documentation. Reference Attachment II, Item 4 (HA-60-108, 109, 120, and 122).

2.2 TASK 1.2 - SPACE-ORIENTED BIOTECHNOLOGY

Statement of Work requirements, paragraph 1.2 - Define, analyze, and participate in future development of space-oriented concepts of biomedical techniques and biomedical hardware systems for ground-based and airborne medical applications.

2.2 (Cont'd)

A. Identify, investigate, and analyze information pertinent to applications projects and studies, to derive specific information for use in direction and conduct of the project.
B. Review schedules, documentation, reports, design drawings, specifications, test plans and procedures, and participate in development of acceptance testing.
C. Interface with Principal Coordinating Scientists (PCS's) as coordinated with the Medical Applications Officer.
D. Participate in activities to resolve unanticipated contractor technical problems on applications projects.
E. Develop scheduling requirements and track progress and status of applications projects.

Results/Discussion

An extensive investigation, study, and analysis was performed to identify space-oriented concepts or equipment of the high technology classification which would have potential application to the IMBLMS AHSFU. Thirty-one such items were identified and detailed analysis of available technical data was performed to define unique interface requirements, including power, isolation, space requirements, and read-out/analysis provisions. A schedule of availability to IMBLMS for sixteen of these items has been tentatively established, ranging in date from currently available through FY. 76. Reference Attachment II. Item 5, (HA-60-140).

Another example of this type of activity concerned definition of component sources and recommendation for equipment selections which were provided for the Portable Display Entry Device currently being considered for development by NASA. Additionally, many equipment recommendations were provided to IPO on the systems associated with the IMBLMS AHSFU.

A technical review of a U. S. Army "Proposal for a Medical Research Semi-trailer" was accomplished at IPO request to evaluate selected

2.2 (Cont'd)

technical aspects of this paper for application to the IMBLMS MHU specifications. Several recommended areas were defined which would assist in this definition of MHU specifications. Reference Attachment II, Item 5, (HA-60-131).

2.3 TASK 1.3 - LIFE SCIENCES PAYLOAD DEFINITION

Statement of Work requirements, paragraph 1.3-Conduct studies and analyses of the IMBLMS activities associated with the Space Shuttle Payload Advance Planning and Preparation for Concept Verification Testing (CVT) for technical planning and coordination. This will necessitate participation in reviews, meetings, and critique of study reports, developing recommendations for upgrading on-going related studies and for incorporating IMBLMS concepts and approaches and generating system concept requirements for CVT mockup.

Results/Discussion

1. A detailed analysis and review was performed on a NASA Headquartersoriginated document entitled "Life Sciences Flight Research Program Document". This document, which was distributed to all the NASA centers for review and comment, was intended to provide a working paper for development of specific payload planning guides and was to serve as a basis for the development of a management approach for the Space Shuttle Research Program.

The review indicated that the document was vague about the assignment of center roles and responsibilities. In addition, the report lacked organization and failed to mention such features as the use of Principal Investigators (PI's) and PCS's, or make any comment or request on methods of data/information transfer between participants. Reference Attachment II, Item 6, (HA-60-121).
2. Results of an inspection of mockups of a Modular Space Station applicable to the Space Shuttle were transmitted to IPO. This memo also reported on a Payload Committee meeting which dealt with

2.3 (Cont'd)

utilization of the mockups in Block 2 Concept Verification Testing at JSC. Reference Attachment II; Item 6, (HA-60-106).
3. A proposed Program Plan for Life Sciences Payload Experiment Identification and Selection and PI involvement was requested by IPO. The draft of the plan that was generated under IPO guidance offers a groundwork for achieving participation by PI applicants and for acquiring experiments. Reference Attachment II, Item 6, (HA-60-132).
4. Materials comparing the IMBLMS and General Dynamics/Convair (GD/C) approaches for providing biochemical, cytological, and physiological measurements and support to Space Shuttle Sortie Laboratory development were transmitted to IPO and to J. Mason (Life Sciences Payload Planning). It was found that use of four items from developmental programs including the cell counter, slide stainer, mass spectrometer, and GØ analyzer from IMBLMS and Skylab, could save $\$ 2$ million in estimated developmental costs for payload measurement devices. It is suggested that a more detailed study which includes the man/system integration Functional Program Element (FPE) would show still more significant savings by transfers from current and recently completed developmental programs. Reference Attachment II, Item 6, (HA-60-136).
5. An analysis was made of the GD/C Final Report entitled "Life Sciences Payload Definition and Integration Study". Comments were provided to IPO concerning the Study's format and organization in addition to content and rationale. Reference Attachment II, Item 6, (HA-60-138).

2.4 Task 1.4 - PROGRAM INFORMATION TRANSFER

Statement of Work requirements; paragraph 1.4 - Perform a transfer of program information to designated Government and/or another contractor's personnel to effect an orderly transition.
A. During the final months of these efforts and at the direction of IPO, the contractor shall prepare an inventory and transfer to the designated personnel the files, program records, design

2.4 (Cont'd)

data, and other pertinent information that has been collected and developed while performing this contract addition and previous related contracts (NAS 9-9456 and NAS 9-11756).
B. During the final month of this effort, the contractor shall work with and generally orient the personnel designated to succeed him for the purposes of effecting an orderly transition.

Results/Discussion

During the accomplishment of the tasks associated with this contract, data gathered in performance of specific tasks was placed in identified folders in the Boeing/IMBLMS working file. This material, in addition to the source material remaining from previous Boeing/IMBLMS activities, will be inventoried and tendered to IPO or an IPO-designated receiver at the close of this contract.

A file containing all of the formal products resulting from Boeing/ IMBLMS activities associated with Contracts NAS 9-9456, NAS 9-11756, and NAS 9-10771, has been established adjacent to the IMBLMS Program Office. Listing of the contents of this file is contained in the Reference Section of this report (page vii). A copy of this report will be placed in that file upon receipt of IPO approval.

Several times during the contract period transfer of selected materials to LMSC was accomplished as directed by IPO. Typical of these transfers was a packet of information peculiar to the Papago site, which was provided to LMSC to assist in early systems requirements definition. These transfers, although accomplished informally, were always individually approved by IPO. . In addition, a record of all individual technical contacts involving IMBLMS activities between Boeing personnel and outside organizations was provided to IPO on a weekly basis.

ATTACHMENT I TO FINAL REPORT - IMBLMS

EXHIBIT C

STATEMENT OF WORK

EXHIBIT C

STATEMENT OF WORK

TASK 1.1

Compile and analyze available technical information and data relating to the IMBLMS Program and make recommendations as to potential problem areas during the design and development of the IMBLHS (Phase C) by:
a. Preparing technical summary for each subsystem which highlight design features or potential development problems demanding critical assessment.
b. Reviewing details of design changes or deviations.
c. Reviewing IMBLMS program requirements for areas of technical concern.
d. Reviewing critical program documentation for adequacy and completeness.
e. Identifying critical site selection faciors and compile review comments.
f. Reviewing and evaluating long lead time.items relating to identification, selection, and procurement rationale.

TASK 1.2
Define, analyze, and participate in further development of space oriented concepts of biomedical techniques and biomedical hardware systems for ground-based and airborne medical applications.
a. Identify, investigate, and aralyze information pertinent to applications projects and studies, to derive specific information for use in direction and conduct of the project.
b. Review schedules, documentation, reports, design drawings, specifications, test plans and procedures, and participate in development of acceptance testing.
c. Interface with Principal Coordinating Scientists (PCS's) as coordinated with the Medical Applications Officer.

PAGE 1 of 2
d. Participate in activities to resolve unanticipated contractor technical problems on applications projects.
e. Develop scheduling requirements and track progress. and status of applications projects.

TASK 1.3

Conduct studies and analysis of the IMBLMS activities associated with the Space Shuttle Payload advanced planning and preparation for Concept Verification Testing (CVT) for technical planning and coordination. This will necessitate participation in reviews, meetings and critique permanent study reports. Develop recommendations for upgrading on-going related studies and for incorporating IMBLMS concept and approaches, and generate system concepts requirements for a CTV mockup.

TASK 1.4

Perform a transfer of program information to designated Government and/or another contractor's personnel to effect an orderly transition.
a. During the final months of these efforts, and at the direction of IPO, the contractor shall prepare an inventory and transfer to the designated personnel the files, program records, design data and other pertinent information that has been collected and developed while performing this contract addition and previous related contracts (NAS 9-9456, NAS 9-11756).
b. During the final month of this effort, the contractor shall work with and generally orient the personnel designated to succeed him for the purpose of effecting an orderly transition.

PAGE 2 of 2

table of contents

OF SIGNIFICANT TRANSMITTAL MEMOS

Page
A. PRODUCTS ASSOCIATED WITH TASK 1.1
ITEM 1
HA-60-104 Site Application Analyses II-4
HA-60-111 Information on Legislation on II-3] Physician's Assistants in New Mexico
HA-60-112 Update of Information on II-32 Utilization of Parameds
HA-60-113 Pennsylvania Physician II-34 Assistant Legislation
HA-60-114 New Mexico Physician II-35 Assistant Legislation
ITEM 2
HA-60-115 IMBLMS AHSFU Cost Reduction Options II-40
HA-60-118 Advantages of Conserving the Mobile II-44 Unit Concept
ITEM 3
HA-60-103 Review Comments on IMBLMS Phase C II-47
Kick-off Meeting of Dec. 20, 1972
HA-60-129 Interface Coordination \& Planning II-5I Meeting
HA-60-123 Working Material for Consideration in II-67 Arriving at Agreements between HEW, IHS, NASA, and LMSC as a Result of IMBLMS Program Redefinition
ITEM 4
HA-60-108 Engineering Review of the IMBLMS II-78 AHSFU Updated System Block Diagram, Revision B, Figure A-2
HA-60-109 Transmittal of Comments on KFI II-79Work Statement
HA-60-120 KFI Role in AHSFU, Parts I, II, II-82 and IH
HA-60-122 Role of KFI in AHSFU II-86

TABLE OF CONTENTS - (Cont'd)

Page
B. PRODUCTS ASSOCIATED WITH TASK 1.2
ITEM 5
HA-60-140 Transmittal of High Technology Items II-89 for GFE to IMBLMS - Revision B
HA-60-131 Comments on "A Proposal for a Medical II-120
Research Semi-trailer Van" by Capt. G. R. McCahan, Jr., DVM, U.S. Army Aeromedical Research Laboratory
C. PRODUCTS ASSOCIATED WITH TASK 1.3
ITEM 6
HA-60-121 A Review of Life Sciences Flight Research II-126 Program for the Space Shuttle Program - Preliminary Study
HA-60-106 Results of Life Sciences Payload Develop- II-139 ment Committee Meeting Jan. 8-12, 1973
HA-60-132 LSP Experiments Program Plan II-141
HA-60-136 Transmittal of Work Packages II-149
HA-60-138 Comments on Analysis of General Dynamics II-174 Final Report "Life Sciences Payload Definition and Integration Study"

UAITED STATES GOYERMAEMT
2. Way Mano

HA-60-104

> OATE of rebsice
> January 5, 1973

Subject: Site Application Analyses

OATE OF KEF゙Y

INSTRUCTIE::S

Use routing symbois ".icitrst ;-: sible.
SERDER:
Formard orbinal sai crie sor:
Conserve space.
RFCEIVER:
Refly bolow the ze.issie, f:-
one cony, refurn on: :var.

Attached here:ith are three copies of the Site Application Analyses perfomed by Dieing on the Uilliansport, Papago, and Hatch candidate sịtes, at the request of IPO.

From:

$$
5-2720 \quad \text { НА-60 }
$$

SITE APPLICATION ANALYSIS - HATCH, NEW MEXICO
The results of an analysis by Boeing of the subject site for the IMBLMS Area Health Services Field Unit are presented below.

I. STRENGTHS

The site is excellent in every respect except for the weaknesses described in paragraph II. below.
II. WEAKNESSES
A. The basic weakness is that the State of New Mexico does not have laws which allow paramedical operations like those required for the IMBLMS project. Responses given to questions state that a paramedical ACT is now in draft form and will be voted on by the New Mexico legislature during the coming session. However, the data furnished indicate that the ACT, if passed, will be significantly restrictive in nature and will not be suitable for IMBLMS. The New Mexico concept is based on having very close coordination between doctors and paramedical personnel on all functions, and sending doctors to the remote site on a scheduled basis for patient treatment, e.g., this is the paramedical approach used for the Estancia area from which data are being collected for the proposed paramedical ACT.
B. There is inadequate recognition in the site data regarding how the IMBLMS project will relate to future space missions. This is reflected in the weakness described in paragraph A. above, e.g., it is not practical to shuttle doctors back and forth to a space vehicle.

III. SITE ORIENTED QUESTIONS NEEDING FURTHER EVALUATION

The question of legality of paramedical operations in New Mexico causes significant concern for the adequacy of the Hatch site. Further, it appears from studying available data that this question cannot be resolved in the near future. The risks involved in trying to hurry a new Act through a legislature are significant. An overview of paramedical laws in the U.S. provides good evidence that similar legislation has a long history of suppression.

Site Application Analvsis - Papano Reservation

An analysis of the site candidacy of the Papago Indian Reservation for the DHEM/BASA IGBLAS Area llealth Services Field Unit test project was performed by Bocing with the following results.

I. STRENGTHS

A. This is a joint application from:

> E. S. Rabeau, M.D.
> Director, Office of Pesearch and Development (ORD) Irdian Mealth Service (Tucson)
and
Augustine Lopez
Chaiman, Papago Tribe
B. The ORD is specificaily assigned the task of developing improved methoc's and systems for health service delivery and has presently developed a reservation-wide, patient-oriented conputer-based Health Infomation System winich could be of considerable value in the assessment of the IHBLifs dernonstration and field test activities.
C. The Papago Reservation (approximately 100×100 miles) has a population of about 10,000 people. This system provides a discrete entity of pácient population, local and federal government, gecgraphical, clinatic, and techmical features which tend to assure valid IFBL!'S field test and demonstration.
D. The tribe through the Executive Heal th Staff presently operates six reservation-wide health/education oriented programs. These programs provide a natural information base for Ilflisis operations.
E. The Papago tribe has an incorperated governciental form and provides for annual election of the Chairman and Vice Chaiman wo oversee the daily operations.
F. The Indian Health Service lias organized in 1955 and is responsible for American Indian and Alaskan Mative health servicos. The Sells Service Unit is a compenent of the Office of Researcil and Devilopment (ORD) Headquarters, IHS.
G. Cost effectiveness considerations are favorable, in that a reserva-tion-wide infomation system with supporting computer facilities and software are in existence to provide a wide data base for MRLAS operations. In addition, phil cars are equipred with. Kleinschimitt printers to permit licalth Information System retricuals at remite locations sithout power or telephone service.
H. Staff housing availability can be accomplished through a tribal cooperation in housing, robile homes, or private housing in the surrounding commuities or cities.

1. Provider and consumer acceptance - both have had favorable interest indicated and a willingness to participate.
J. Winile the IAS has been able to irprove the Indian and Alaskan Native health indices, these people still to not enjoy the health statistics of the general U. S. population. Dispersed populations such as the Papagos make health care delivery by existing systemis difficult, and innovative prosrans such as HIS and the CHin (and mbilis) must be developed to meet this need.
2. WEAKIESSES
A. Area comiunications such as telephone and mâl/parcel post services
\therefore are more difficult (here, due to low population density) then are

- usually experienced in the northeastern section of the U. S.
B. Road and trensportation services - main roads are all-weatier or inproved in the reservation and, iherefore, do not represent a problen. However, like any low population density area, the remote cammities are usualiy linked by dirt or gravel roads
\because which can become difficult to traverse in bad weather. Annual rainfall is very loiz, so dust and stones constitute the main hazards to transportation equipment and operations.
III. SITE ORIENTED RUESTIOIS HEEDING FURTHER ELABODATION

Papago Site -

i. Conmunications:
A. More infomation is needed on existing comnunications
(1) What sysiems are available on the reservation

```
VHF
UHF
Nicrowave
Citizens Band Radio
Reservation Police,
```

(2) Frequency allocations presently available
(3) Existing towers, sites and comnunications facilities (1). Specifics on power/utilities
B. Iio statement was included on telephone services presently available.
C. Question - Ho: would the fillSFU system be notified of an accident or medical need in the remote areas?
2. Staff Impact Items
A. Staff housing is available at San Xavier, Santa Rosa and Sells. Report mentioned mobile homes in remote areas who provides this housing?
B. Item F, page 4, mentions a professional staff availability -(1) Hould these people mian the system?
(2) Would LHSC physicians be accepted?

SITE APPLICATIOA BHALYSIS－VILLIAHSPORT，PEMASYLVAiHIA

I．STREMGTHS

The site is a well－established，stable commity without important linguistic berriers．The populace is progressive with respect to education，commaty interest，etc．，hence the test experience would be relevant to the majority of progressive Anerican commuities．

II．WEAKiESSES
Medical staffing is already at a nearly national par，although the distribution exhibits the national trend in rural non－availability and urban surfeit．

The area is not shown to be progressive with respect to commuications systems and computerization for business or medical management．

The legal prerogatives of allied health professionals in prinary roles in renote health care delivery are apparently very limited．

The ten specialties of allied health professionals produced by the Gilliamsport Hospital are oriented to：ard hospital service rather than primary health care delivery，as is generally needed by AliSFU．

No data vere offered on the incidence of disease among the population or the likclihood that individials bould seek health care．

III．SIIE ORIEMTED DUESTIOAS HEEDISG FUPTHER ELABORATIOA
A．Legal aspects of AHSFU operation at Nillianisport，Pennsylvania．
Upon review of the Nilliamsport proposal from a patient care standpoint，it was noted that the candidate proposes to use nurse practitioners for primary patient contacts．Review of the Pennsylvania statuies which were furnished by the comon－ wealth Department of Health in Hay 1972 did not reveal a legal status for nurse practitioners（see Section 4，lines 9－14，and Section 3，lines 11－24，SB 1394）．Physicians＇assistants can be used but they cannot exercise independent judgment in determining and prescribing treatment（see Section 2 （c），lines 7－10，SB 1134）． This stipulation is construed to require that a physician be in－ volved in each patient contact，except in emergencies．

Since the proposal does mot address itself specifically to the mode of operation intended by liaSA－HE：，it is suggested that the proposer be asked to furnish competent information on the following points：

legal status of the nurse practitioner to provide primary patient contact and treat the majcrity of fatients with recourse to the services of a physician only when she felt that consultation was necessary, provided also that she maintained records for periodic review of a licensed physician.

Currency of the stipulation in Pennsylvania Senate Bill Number 1194 that prohibits the exercise of independent judgient and independent action by plysicians' assistants except in life threatening emergencies.

Referenced legislation - Senate Bill No. 1394 Session of 1972 (The liedical Practice Act of 1972)

Senate Bill No. 1194 Session of 1971 (Practice of liedicine by Physicians' Assistants)
B. The "data base" should be described in detail (reference proposal page 9) with respect to the existerice of community health data, number of visits to a medical installation per person per year, also probable availability to IMBLAS of individual medical data and population data.
C. The existence of fixed computer facilities and the possible interface of the IMEL: F s system with them should be explored.

the general, aschbly of pen:isylvania

INTRODUEED GY MESSINGER, MAZZEI, MELLOW, HILL, COPPERSMITH AND ANMEPMAN, DECEMEER 8, 1971

REFERRED TO STATE GOVERNMENT, DECE1SER 8, 1971

AN ACT

18. board as providej by this act; and,
(3) If the i \quad is registered as a phyician's asistant as provided by tr: :ret.
(b) The act $\ddot{\because} \because$.et prohibit a student enrolled in an approved progran for training physjcians assistants roon rendering nedical services if the services are rendered in the course of the progran.
(c) Hotwithstar' subsections (a) and (b) of this section, a physician's assi \because shall not exercise independent judgnent in determining ana", ribing treataent except in
life-threatening enégencies.
Section 3. The provisions of this act do not require an enploye of a person licensed to practice nedicine under this act, or of a medical clinic or hospital to be registered under this act, c focss the employe is employed as a physician's assistant in thich case the emploje shall be registered undor this act.

Section 4. The board may adopt regulations regarding the registration of phisiciansl assistants and the nodical services that assistants may perforn, incluaing but not linited to:
(1) The educational and other qualifications of such assistants:
(2) a required training progran for applicants;
(3) Procedure applicable to applications for exafination and registration;
(4) Tests or exaninations given applicants by the board;
(5) Registration of qualificd ayplicants, tenporary registration and reneval of registration:
(6) Medical scrvices registrants s:ay be authorized to perforn:
(7) Supervision of services of zegistrants; and
(8) Tert.ancion of regjetration of res, itrants. absence of renesal of annual registration constitutes the unauthorized practice of nedicinc and subjects the assistant to the penalties provided by lai.

Section 6. (a) a person licensed to practice ncaicine under the lak of this state shall not use the services of a physician's assistant without the prior approval of the board. 리i She application shall state the nane of the physjcian's assistant, describe the oanner and extent to kinch his services vould be used and supervised, state the education, training and expericnce of the physician's assistant and provide such other information in such a forn as the bosed nay require.
(b) The board nay approve or reject an application, or it nay nodify the proposed use of the services of the assistant and approve the application as nodified. kpproval shall be valid for no nore than one year but may be renered annually. When it appears to the board that the services of a physician's assistant are being used ia a manner inconsistent with the approval granted, the board may witharak its approval. If a hearing is requested by the physician or the physician's assistant upon the rejection of an application, or upon the vitheraval of an approval, a hearing stall be conducted and findings issued.

Section 7. (a) Every physician's assistant shall pay to the board:
(1) With an application for registration as a plysician's : assistant, fifty dollars (550).
(2) For registration or renckal of registration fox one year 2 to engage in active practice as a physician's assisstant, tyenty 3 dollars (\$20).

4
5 if the registrant is not engaged in active practice as a physician's assistant, five dollars (S5).

Section 0. The board shall subgit annually to the legislature a report detailing the nuaber of plysicians' assistants registered uith the board; the location of all physicianse assistants enployed or in training in this state; a copy of all regulations adopted by the board pursuant to section 4 of this act; and all pertinent data collected by the board pursuant to subsection (a) of section 6 of this act.

TIIE GENERAL ASSEMWLY OF PENXSHLYANIA

Session of 1972

IN TRODUCED BY COPPESSENTH, STAUFFER, MURPHY, POVNER, MESSINGER, HILL, SESLER AND FRAME, MAY 2, 1972
referred to puelic health and welfare, may 2, 1972

All ACT

2.1 its amendients.

22: (2) "Hedicsl collcạe." an institution of hicher learaing

$$
-\int_{-\therefore}=
$$

C15..
11.
28. hospjtal staff: lothing coniained in this act shall be construed

29 to entitle a clinical clerk to practice nedicine and surgery or
Mcdical Collegce, its successors or assigns, or the Ancrican Medical issociation, ejther jirectly or through their respective accrediting bolins, as :n ajency to provide courses in the arts and sciences of nedicine and
the Connonrealth to grant Acadenic Degrees in Modicine.
(3) "bedicine and surgery." The art and science having for its object the cure of the diseases of and the preservation of the health of man including all practice of the healing art with or without drugs, except loaling by spiritual means or prayer:
(4) "Physician." A person who has received formal and recognized training in the art and science of medicine and is qualified to seek or has acguired a license to practice medicine and surgery.
(5) "nealing art." The science and skill of diagnosis and treacment in any maner viatsoever of disease or any ailent of the human body.
(6) "Intern" or "resident." A physician who is receiving supervised graduate nedical training at an approved hospital. or its legal affiliate.
(7) "Clinical clerk." An undergraduate student in a nedical college, tho is assigned under the auspices of the school in which he is currently enrolled to nake notes upon patient histories and physical examinations and to perfoar certain procecures and laboratory tests for the sole purpose of instruction and experience or tho nay sake notes which becone official only when edited and countersigned by a member of the lo prescribe arugs.

Which has been fully aceredited by the Association of anerican
$-2-$
(8). "Hospital." An institution fully aceredited by the Joint Conmission on Accreditation of Hospitals or licensed by the Comoncealth of pennsylvania to render health care,
(9) "Approved hospital.", A hospital. which has been approved by the board for providing supervised graduate medical training.
(10) "hffiliate." h nember of a group of two or nore fully accrecitei health care institutions legally united by an agrecent of affiliation, conceived to enhance the potential of all participants in the provision of health care and medical education.

Section 3. Yractice of gedicine and Surgery without micense prchibited; Penalties.--It shall be unlawful for any person in the commoncalth to engage in the practice of aedicine and surgery, or pretend to a knorledge of any branch or branches of nedicine and surgery, or to hold himself or herself forth as practitioner in medicine and surgery, or to assuec the title of doctor of nedicine and surgery or doctor of any specific disease, or to diagnose diseases, or to treat diseases by the usc of medicines and surgery as defined in clause (3) of section 2 of this act or by any other means, or to sign any death certificate, or to hold hinself or herself forth as able to do so, excepting those hercinafter exen!ted, unless he or she has first fulfilled the requirenents of this act and has received a certificate of licensure from the board, which license shall be properly recordej in the office of the board. On first offense any person rilfully violating the provisions of this section of this act slail, upon conviction, be guilty of a nisdencanor and shall be subject to a fine of not nore than one thousand dollars (si, 000) or imprisonsent. for not nore than six tonths in the county prison, or both, at the discretion of the court; on
second offense shall be subject to a fine of not less than two 2 thousand dollars $(\$ 2,000)$ and inprison:ent of not less than six. 3 ronths or more then one year, at the discretion of the court.

Scction 4. hcts and Services perforited by an assistant to a Physician.--The board shall have the porer to acopt and revise regulations governing allied nedical personncl tho assist physicians if such allied medical persomel are not at the effective date of this act otherwise controlled by lat or regulation. In the absence of standards cstablished by the board, nothing in this act. shall be construed as to prohibit services and acts rendered by a physician's techician, assistent andor other allicd nedical person if such services and acts are rendered under the supervision, direction andor control of a licensed physician.

Section 5. The Board's Forer to Grant license.--ihe board tay grant the following licenses:
(1) License. License for the practice of nedicine and surgery :ithout restriction.
(2) Temporary license. A graduate of a nedical school tho gualifics under section 7 of this act, nay, on receiving his: medical derree, apply to the board for a temporary license npen presenting a coupleted application forn issued by the board and paying a reasonable registration fee in an anount as deternince from tine to tine by the board.
\dot{A} temporary license shall be valid for twelve consecutive nontlis and shall be recognized only as conferring upon the licensee the riglit to participate-in approved greduate medical
0 training ritain the conflex of the fospital to which he is
9 assigned. Temporary licenses :́ill becorec null and void after 0 tuelve ronths, at which tine they shall be surrencered to the
bonrd. The hoard nay extend the validity of a tenporary license when such action is warranted.
(3) Linited Iicense. A linited license ay be grented by the board to graduates of foreign medical. schools who have attained through professional grovth and teaching exporience the true status of teacher, or its equivalent, for the purpose of teaching and/or practicing ocdicine and surgery in one of the nedical schools or in any of its affiliates within the Connonveajth. Persons granted ligited licenses who subseguently desire to obtain a license for the practice of nedicine and surgery without restriction shall. be required to veet all "of the standard reguirements for such license as set forth in this act.

- (4) Hiduifery, Physical Therapy and Drugless Therapy. lothing in this act shall be construed to preclude the board Eron continuing to license, register and regulate persons engaged in tho practice of niduifery and/or physical therapy or co register or regtilate persons engaged in the practice of drugless therapy in accordance with existing rules and regulations layfully pronulgated by said board prior to the effective date of this act.

Section 6. Standards for hedical Training and Facilities.--\{द\} The cducational qualifications for acceptance as a matriculant in a medical college incorporated within the Comeonealth and the curricula and training to be offered by such nedical colleges shall meet the requireaents set by the Liaison Connittee on hedi气al Education of the Anerican fedical Association and the kssociation of derican Medical Colleges, or any other accrediting body shich from tine to titie nay be recognizod by the board.
(b) It shail be the duty of the board, in its discretion,

2 the facilities possessed by eacin of the modical colleges and 3 hospitals offering or desiring to offer nodical training in 4 accordance vith the requirencrits of this act. It shall further 5 be the duty of the board, by inspection and otiervise, to 6 ascertain the facilities and qualifications of nedical of cortification by the Educational council for roreign sedical

Graduates, its successors or assigns.
(c) A licensee who fulfills the reguirenents of this act relating to citizenship by presenting a declaration of intention of beconing a citizen, shall have his license automatically revoked by the board if such licensee does not present a certificate of United states citizenship to the board within seven years after original licensure.
(d) Each application to the board shall have attached thereto the affidavit or affirmation of the applicant as to its verity. Any applicant who.knowingly or wilfully makes a false statenent of fact in his application shall be subject to prosecution.

Section 8. Certification of Licenses. --The fact of licensure to practice neficine and surgery in the connonvealth shall be certified to by the board to other jurisdictions upon fornal application and by payment by the licensec of a reasonable fee in an anount as deternined from tire to tine by the board . provioung that the licensee at such tine is in good standing.

Section 9. Heetings of the Board; Examinations.--(a) The board shall hold tro stated meetings each year at a place within the Contonnealth as detomained by the board for the transaction of its business, and nay hold special aectings upon giving due notice thercof. The board shall hold at reast two exaninations for applicants for liccnsure under clause (1) of section 5 of this act each year.
(b) Such exaninations conducted by the board shall he in the English language. special exatinations can be designated by the board. The cxaninations shall be held at such tines and placos as desjgnated by the board.
(c) In case of fajlure at aly steh caaination the applicant -7-,

30 have othernjes conpliad with tho yrovisjons of this act, shall

1 reccive fron the comassioner of rrofessional and occupational
2. Iffairs in the Departnent of State, acting for the board, a

3 license entitling then to the right to practice medicinc and 4 surgery without restriction in this Comonucalth. Each such 5 Jicense shall be duly recorded in the office of the board, in a 6 record to be properly kept for that purpose which shall be open 7 to public inspection; and a certified copy of said record shall 8 be received as evidence in all courts in this Conmonucalth in 9 the trial of any case: provided, That this section relating to 10 licenses to practice nedicine and surgery shall not apply to 11 neaical officers in the medical service of the areed forces of 12 the United States, or the onited States Pubiic Mealth Service, or Veterans administration, or physicians enployed within 14 Federal services, while in discharge of their official duties; 15 or to any one who nay be a duly licensed practitioner of 17 a licensed physician of this connonnealth to consult uith hia in 18 a case under treatnent; or to physicians of other jurisdictions anycne while actually serving as a clinical clerk under the supervision of the nedical or surgical staff in any hospital. Vothing contained in this section slali be construcd to entitle a clinical clerf to practice nedjeine and surgery or to prescribe drugs: and provided further, That any duly licensed physician residing in or raintaining his office of practice in any state near the boundary line between said state and this Conrionsealth those practice extends into this Conankealth shall have the right to praciice in this counonscalth, at the discretion of the boar?, provided he files with the secretary of of the spocinliy discioning for which the apulicant has becn
trained but may also inclute materiai fron the genoral field of medical.scierice.
(c) It shall be the duty of all persons no\% licensed to practice nedicine and surgery without restriction, or who shall hereafter be so licensed by the bcard to engage in such practice in the conoonsealth to be registcred with the board, and thereafter to register in like ranner biennially on or before the first day of January of each succeeding bienriua. The form and method of such registration shall te provided for by the board in such manner as will enable the board to carry into cffect the purposes of this act.
(d) Each person so registering with the board shall pay, for each biennial registration, a reasonable fee as determined fron tine to tine by the board which fee shall accompany the application for such registration.
(e) Upon receivins a proper application for such registration accornanied by the fee above piovided for, the board shall issue its certificate of recisiration to the applicant. Said certificate together viith its rencuals shall be good and steficient evidence of registration under the provisions of this act.

Section 12. Violation of hct.--Any person, or the. responsible officer or employe. of any corporation or. partnershin, institution or association, violating any of the provisions of this act shall upon sumary conviction be sentenced to pay a fine of not less then one hundred dollars (s.100) and not more than five hundred dollars (5500).

Section 13. Examination Eces.--The board shall have the poner to charge a reasonable fee for all cianirations, as deternined rom time to. line by the baard.

$$
-11=
$$

(4) Haring his license to practice nedicine and surgery revoked or susponed or having other disciplinary action taken, or his application for a license refused, revoked or suspended by the proper licensing authority of another :tate, territory or country.
(5) Being unable to practice nedicine with reasonable skill and safety to patients by reason of illncss, drunkennoss, excessive usc of drugs, narcotics, chenicals, or any other type of naterial, or as a result of any mental or physical condition.

In enforcing this clause (5), the board shall, upon probable cause, have authority to conpel a physician to subnit to a nental or physical examination by physicians designated by it. failure of a physician to submit to such exanination when directed shall constitute an adrission of the allegations against him -nless failure is due to circunstances beyond his control, consequent upon which a default and final order may be enteres githout the taking of testimony or presentation of evidence. A physician affected under this paragraph shall at reasonable intervals be afforded an opportunity to denonstrate that he can resume a competent practice of medicine with reasonable siill and safety to patients.
(6) violating a laviul regulation promulgatod by the boaza or violating, a lapul order of the board, previously entered by the board in a disciplinary procceding.
(7) Knoringly naintaining a professional connection or association rith eny porson who is ir violation of this act or regulations of the hoard or thotingly aiding, assisting, procuring or advising any urlicensed person to practice acdicine contrary to tilis act, or regulations of the board.
(8) Seing guilty of innowal or unprofessional conduct. to carry out the pirposes of itis act in conforaity pith the
provisions of the act of July 31, 1968 (Act llo. 240), finown as tl:c "Cocinonvealth Documents Lak."

Section 18. . Applicability of Act.--(a) The provisions of this act shall not apply either directly or indirectly, by intent or purpose, to affect the practice of:
(1) Pharmacy as authorized by the acts approved Septenber 26. 1951 (P.L. 1(64), knorn as "The Drug, Device and Cosnetic Act," and September 27, 1961 (P.L.1700), known as the "pharmacy sct."
(2) Dentistry as authorized by the act approved Ray 1, 1333 (P. L. 2ib), known as "The Dental Lay."
(3) Optometry, as authorized by the act approved March 30, 1917 (P.L.21), entitied, "An act defining optoaetry; and relating to the right to practice optonetry in the Comonvealth of pennsylvania, and maling certain exceptions; and providing a BGard of optonetrical education, Examination, and Licensure, and means and methods whereby the right to practice optonetry aay be obtained; and providing for the neans to carry out the provisions of this act; and providing for revocation or suspension of licenses given by said board, and providing penalties for violations thereof; and repealing all acts or parts of acts inconsistent therexith."
(4) Chiropractic, as authorized by the act of sugust 10 , 1951 (P.L. 1182), known as the "Chiropractic Registration sct of 1051."
(5) Podiatry, as authorized by the act of harch 2, 1956 (P. 1. 1206), knoin as the "Poaiatry act of 1956."
(b) This act shall not be construcd so as to give the Eoard of :edical Education and Licensure any juristiction over any of the sel:ools or colleges of the nethods exenpted jin this section.

Scction 19. Spccific licpals.--(a) The folloring acts and all ancodnents thereof and supplenents thereto are repealed absolutely:
(1) The act of July 9, 1897 (2.1. 216), entitled "in act vaking valid the diplonas of physicians, issued by any reputable college or universjty in another state or forejgn country, which hape been improterly registered under the act of assembly approved June eighth, $A n n o$ Donini one thousand eight hundred and cighty-one; and rith the same effect as if said diplomas had been legally registered under the provisions of said act."
(2) The act of May 31,1919 (P.L. 358), entitled "in act providing for the granting of certificates of licensure to practice medicine and surgery to certain persons who served in the Arny or lavy of the Unjted States or any branch or unit thereof."
(3) The act of iugust 10,1951 (?.L. 1154), cntitled "in act providirg tesporarily for the grant, yithout exaninalion, of certificates of licensure to practice medicine and surgery to certain persons rho becone nembers of the arned forces of the United States; and suspending inconsistent lars."
(4) The act of June 3, 1911 (P. L. 639), knoun as the "iedical Practicesct"; act of fay 31, i919 (P.L. 358); act of kpil 20, 1941 (D.L.OO3); act of August 10, 1951 (D.L. 1154); act of Decenber 15, 1959 (?. I. 1766) ; act of Septeaber 1, 1961 (P.L. 1149); and the act of august. 14, 1963 (P.L.957).
(b) All other acts and parts of acts incorsistent hereivith are repealed to the extent of such inconsisiency.

To:
Norm Belasco, Chief, DE2
Subject: Information on Legislation on Physicians' Assistants in New Mexico

Per request from IPO, contact was made with persons oceupying non-political positions in New liexico who could advise on their current legislative effort on Physicians' Assistanio is of January 30, 1973. Our earlier contacts in the State Comprehensive Health Planning Office suggested contact with Mr. Ralph Marshall of the State Medical Society. Mr. Aarshall advised that the Legislature was scheduled to consider the bill sporsored by the Medical Society on the next day (January 31), and that they ver: deferring action on a different bill which would amend the act to permit a physician to use up to five Physician's Assistants. Mr. Marshall stated that interested groups such as the Nurses' Association had endorsed the proposed legislation, .and that it had no known opposition.

He promised to send a copy of the bill, and stated that it was patterned fron the Oklahona Act, which is relatively non-restrictive. The Board of Medical Examiners in each State is charged with implementation of the Act, thus, through intent and experience, the privileges of Physicians' Assistants can be either extended or withdrawn, and this can be made to apply to indiviciual cases.

CG:sg

To:
Subject:

Norm Belasco, Chief, DE2
/Update of Information on Utilization of Parameds

PHYSICIAN ASSISTANT TRAINING

Per request of IPO for information on parameds, the American Medical Association was contacted by telephone on January 29, 1973, for any updates to their position statements and studies beyond:

- Anon.: Current Status of the "Physician's Assist\#ni" Concept, Informational Bulletin, AMA, Chicago, Jure i97l.
- Points, T.C.: Guidelines for Development of New Hex.lth Occupations, JAMA 213:1169-70, 1970.

The first lists 48 sites where PA's are trained along with prerequisites, duration of training, and avard upon completion.

The second proposes development of new carear fields in health care by reallocation of tasks, design of training frograms, requirement validation, and certification.

The AMA spokesman stated that they had nothing more reent.
The National Institutes of Health were contacted on Jinuary 29, 1973, for information and publications more recent than:

- Anon.: Selected Training Programs for Physician Support Personnel, Bureau of Health Manpower Education, NIH, DFEW, 1971.
- Anon.: Program Support for Physician's Assistants in Primary Care, Bureau of Health Hanpower Education, NIH, DHEW, 19:/2.
- Collins and Bonnyman: Physician's Assistants and Nirse Associates - A Review, Institute for the Study of Health and Society, Wash., D.C., 1971 (HSHAA Contract).

The first lists training courses including ∓ 3 for Physician's Assistants and 25 for expanded roles for nusses.

The second describes federal support availatle for PA training programs. Funds are available for start-up, instruction, student support, and foilow-up costs. The goal of the support seems to be to control course content. In time this shruld control the career - fjelds, prevent overlap, and assure usabiliay of the graduates.

The third reviews the background, describes the graduates and programs, weighs problems such as status, recognition, mobility and insurability, and the current usability of the graduates of PA and Nurse Associate programs.

The Health Manpower Education Office, NIH, (Mr. Braun, 301-496-1981) had no updates to these references nor.pertinent newer materials.

No compendia review the federal training programs for military corpsmen, Indian Community Health Medic, VA Assistant, or Herchant Marine. Syllabus-type information on the Gallup and Phoenix CHM programs is on hand.

Lack of pertinent activity by the AMA on paramedical personnel in lead positions is understandable because of the diversity of opinion in their membership. Adding their prestige to that of the several States who have accredited Physician's Assistant training programs would be a boon to those troubled by potential problems in gaining acceptance by prospective patients - of health care delivery by paramedical personnel.

It is suggested that the entries in Volume II, Medical Considerations in Site Selection (IFBLI'S), be reviewed. Updating in specific areas will be completed upon request. This could include specifics on State legislation, new prograns in being which utilize parameds in primary patient contacts, current and new training programs with respect to course content, evaluation, etc.

Prepared by (ayte (i) Qi:
Caswell Grave

CG;sg

Subject: Pennsylvania Physician's Assistant Legislation

Mr. Henry W. Walkowiak, Director of Comprehensive Health Planning, Commonwealth of Pennsylvania, was contacted on Feb. 6, 1973, on the current status of amendments to the statute on Physician's Assistants which would have amended the basic act to permit "under the supervision of" in place of the current stipulation which amounts to.."in the presence of" a physician. The amendments were defeated by not being reported out of committee, and no change is in immediate prospect.

Nurse Practitioners do not enjoy a legal right to practice as practitioners. The nurse licensure act is 55 years old, and amendment is proposed, but nurses are generally against an alteration of their relationship which would give them expanded roles.

Copies of applicable acts were promised and the respondent verified his non-political posture. He asked only about. the weather, and no information was divulged on topics other than the weather.

CG:sg

Subject: New Mexico Physician's Assistant Legislation

Mr. Ralph Marshall, of the New Mexico Medical Society, was contacted by telephone on Feb. 6 to determine status of the P.A. legislation pending enactment in New Mexico. Mr. Marshall stated that the session lasts 6 weeks and action in less than one month would not be anticipated. The Optometric Society is seeking to amend the bill, and the Medical Society is aligned against amendment. Mr. Marshall stated that the Medical Society would rather lose the bill than accept amendment.

Mr. Marshall suggested contact with the Nurse Examining Board in New Mexico for nurse status briefing (503-268-7744).

Attached is an interpretation of the draft Physician's Assistant Act of New Mexico.

Attachment
 CG:sg
 2/7/73

SSubject: New Mexico Physician's Assistant Legislation

If enacted, this Bill will exempt Physicians' Assistants from most of the ;provisions of a detailed and restrictive medical practice act. Remaining privileges and restrictions of the P.A. will be implemented by and be at the discretion of the State Board of Medical Examiners, which is the usual legislative solution. The Board will apparently not be able to waive detailed legislative restrictions, to wit:
(1) The P.A. receiving compensation from other than a physician.
(2) The physician supervising more than 2 P.A.'s.
(3) The practice of pharmacy' without a license.
(4) The practice of physical therapy without a license.
(5) Any act not perfomed at the direction or under the supervision of a licensed physician in accordance with Board rules.
(6) Any act not otherwise permitted by law nor established by custom.

It is believed that the intent and probably the letter of each can be accommodated by techniques suitable to the Board, such as:
(1) Compensation. The intent is to prevent hanging out a shingle. The receptiorist can prevent misunderstandings by collecting in the name of the Government, and the responsible physician can approve each pertinent payroll entry. See attached Oklahoma utilization.
(2) Two P.A.'s per physician. P.A.'s can be assigned administratively to designated physicians. Another physician can be scheduled to fill in for the designated physician on a shift basis. When more than 2 P.A.'s are actively seeing patients, more than one physician would have to be on call. See attached Oklahoma Utilization.
(3) Practice of pharmacy. A licensed pharmacist or physician is often legally required to act in dispensing drugs, which consists basically of labelling the drug and dose. A nurse or other designated assistant (in a hospital, nursing home, or elsewhere) can complete the delivery
without being in violation of usual pharmacy laws. Depending on the New Mexico statutes, it may be necessary for a pharmacist to visit the LHSC periodically to fill patients' containers. All other acts of a pharmacist are apparently not restricted.
(4). Practice of physical therapy. This will not become a problem unless and until physical therapy is ordered. Tentative IIBLMS lists did not list physiotherapy equipment.
(5) Physician's direction and supervision. The detail required in direction and supervision is left to the Board of Medical Examiners. The usual technique is for the physician to state his intended mode of use of the P.A. and receive approval of the Board.
(6) Legal and customary acts. The P.A. can do anything that is legally permitted to him, or can be legally delegated, or is customarily delegated. This is not defined in this bill, but is left to the Board for regulation and to the courts for adjudication.

It is suggested that something concrete like the Oklahona P.A. utilization plan of the Veterans' Administration be referred to the New Mexico Board of Medical Examiners for approval in the near future, whenever legislation has been enacted. Since they hold the approval authority, they will be determining the manner of performance of Physicians' Assistants.

Attachment

CG:sg

2/7/73
I. Principal Duties and Responsibilities:

The incumbent must be a graduate of an approved program for Physician's Assistants and duly registered by the American Association of Physician's Assistants and performs all dutics listed below.
A. Professional

1. Performs initial history and physical evaluations on new inpatients and outpatients, establishes presumptive diagnoses, establishes general workup of patients by ordering appropriate laboratory $\therefore \quad$ studies, perfons routine incisions and drainages, wound care and debridement, nasogastric intubztions, gastric analysis, lumar punctures, sutures lacerations, etc., the majority of which are performed directly or indirectly under the physician's supervision.

- (:. 2. Performs diagnostic tests such as insulin and I.V. glucose tolerance tests and tolbutanide tests, tissue biopsies, lumbar punctures, paracentesis, thoracentesis and other procedures in consultation with the physician.

3. Places indwelling arterial catheters and performs the necessary blood gas analysis.
4. Starts whole blood.
5. Starts I.V. solutions.
6. Adninisters emergency medications.
7. Manages cardiac arrest patients until attending physician is present.
8. Manages acute respiratory failure until attending physician is present.
9. Manages life-endangering traumatic injuries until the attending physician is present.
10. Administers intravenous medications when necessary.
11. Assists the physician in planning, organizing and delivering orderly medical management programs for patients under his care.
12. Arranges consultations and sees that patients are correctly scheduled for special tests.
13. Is availat? call to any area in the hour of duty tour of duty to assist in an' emergent patent care situation that may arise.
14. Is thoroughly familiar with all current diagnostic, therapeutic, clinical and medical management techniques.
B. Technical and Administrative
15. Assists and trains individuals in certain diagnostic, therapeutic, clinical and medical techniques.
16. Assists in the training of students enrolled in Oklahoma University's baccalaureate degree program for Physician's Assistants.
17. Maintains a file of current reference material and keeps abreast of current knowledge in the field of medicine.
18. Assists the Chief of Medical Service in the discharge of administrative and educational responsibilities associated with that service.
II. Supervisorv Control Ner the Position:

He.is under the direct sumervision of the Chief of Medical Service and general supervision of the physician as designated by the Chief of Medical Service.
III. Other Significant Facts:

The incumbent will work with a minimum of direct physician supervision on both Medical Service and Outpatient Service. He must exercise personal judgment in planning and carrying out a medical care program to meet complex diagnostic and therapeutic objectives on the basis of his personal knowledge and experience. He must exercise originality in solving problens not covered by guides and make adaptations and modifications of procedures with minimal supervisory guidance or review to meet the complaints and highly varying needs of the patients. He is expected to have an in-depth knowledge of human anatomy, chemistry; physiology, as well as ciagnostic, therapcutic, clinical and medical management techniques. He is further expected to assist in the instruction and training of such physician's assistant students as may be assigned to him from time to time.

NASA/HEN PAPAGD AHSFU COHFIGURATION COST REDUCTION AHAL YSIS

I. Replace the NHSF with an increased capability dispensary anbulance (called a Mobile Health Unit). This option will eliminate the two large Cleveland vans presently planned and replace them with one Manitowoc :otor Coach (expanded version). X-ray, microwave, and TV capability would have to be added to this unit.

Rationale $=$ The MHSF (2 vans) is not suited to the constant relocation requirements associated with the low population density existing at the Papago site. The current LP:SC site analysis report calls for the MHSF to move on a daily basis which will result in reduced service capability and a waste of manpower.

Savings - Estimated: $\$ 100 \mathrm{~K}-\$ 750 \mathrm{~K}$ (the base cost delta for each unit vithout special equipment is approx. $\$ 60 \mathrm{~K}$ per Li'iSC cost proposal).
II. Use I/iS physicians, physicians' assistants, secretaries, clerks, receptionists, and drivers during Part III (operation and evaluation) in place of KFI personne1. LMSC would provide the system operators and maintenance technicians, IHS/HEN Would supply the remaining personnel.

Rationale - (1) IHS medical personnel are available (see site selection for the DHEN/NASA-IMLIS AHSFU Test Project, p. 4.). (2) LMSC will design and build the systems and therefore should be better suited to operate them. Savings - Based on a 2-year Part III and burden costs of $\$ 75 \mathrm{~K}$ per man per year, total savings to NASA would be equal to $\$ 270 \mathrm{~K}$.

Impact - IHS has agreed to furnish only 9 people at this time. The critical people to be supplied for this option would include 4 P.A.'s and $3 X$-ray technicians.
III. Eliminate the redundant and hot standby capability from the communications system. These options effectively double the cost of the terminal equipment. LMSC is now proposing going to a redundant (comnand on) terminal capability. LMSC is now also proposing to handle only video on the microwave system. Voice and automated data would be via UHF/VHF.

Recommendation - Eliminate the redundancy and hot standby features of the microwave system, i.e., provide only one terminal at each facility and in the relay station.

Rationale - A loss of microwave would only cause a loss of video capability.
Impact - Non-elective surgery (emergency) might have to be directed by voice only communication.

Savings - Estimated: $\$ 52,500$ (based upon Motorola cost proposal/hot standby estimate).
$\because \therefore$

DM:sg

Assumptions

1. Consider Papago site only.
2. Three hold periods - 30,60 , or 90 days.
3. No construction architectural lead time required.
4. LMSC will hold a team of key people on board. The size of this team will become smaller as length of hold is increased.
5. A 90 -day lead time is required for computer system equipment.
6. Some redesign will be required and another design review will be held.
7. Computer hardware and software people will be double-shifted to minimize schedule impact.
8. Computer system would be firmed and go-ahead given to lease or purchase immediately after hold.
9. Revision of all plans and specifications would be required prior to second CDR.

At a cost of $\$ 7000$ per day to maintain a team at LMSC, the hold cost would be $\$ 1000.00 \times$ no. of days in hold + cost of maintaining team through Part I (not shift into Part II as' planned) + cost of replanning and redesign, approximately 2 months © $\$ 1500.00$ per day.

Total cost for 30-day hold
$30 \times 1000+60 \times 1500^{\circ}=\$ 120,000 \pm$ delta equipment costs
Total cost for 60 -day hold
$60 \times 1000+60 \times 1500=\$ 150,000 \pm$ delta equipment costs
Tota? cost for 90-day hold
$90 \times 1000+60 \times 1500=\$ 180,000 \pm$ delta equipment cosis
Schedule impact approximately (days in hold +60)

NOTE: As hold period increases, team members will be lost and not replaced - . until program is restarted. This savings would be offset by recruiting
$\therefore \quad$ training time of their replacements.
$\therefore \quad$!
\therefore
-.

三
\therefore.
\therefore.
\therefore.
\therefore.

BK:sg
2/12/73

ADVANTAGES OF CONSERVING THE MOBILE UNIT CONCEPT

PART I - Listing of advantages to the IMBLAS Program of.maintaining the mobile unit concept.

PART II - Listing of advantages to the site/service areas in the maintaining of the mobile unit concept.

> Advantages to the IMBLIS Program of Maintaining the Mobile Unit Consept

1. Communications

Maintenance and Logistics nore representative in robile unit
Ruggedized equipment
Space and weight limited system
Variations in signal strength and noise content more representative of space situation
2. Medicsl

Modular packeging for equipment tested in more realistic conditions
Supplies and expendables logistics for supply evaluated
Supplies and expendables handling of disposable wastes evaluated or developed
3. Personnel.

Greater (more representativa) scope of individual responsibility and training requirements

Nature of physician/faramed interface more representative of space Rotation of personne to evaluate learning rates and effectiveness of training procedures

Provides broader spectrum of health care delivery operating environment

Advantages to the Site/Service Areas of
Maintaining the Mobile. Unit Concept

1. Medical

Meet more people and get more utilization data
Do more preventive care by bringing care to people
Do more heal th education by bringing care to people
Shorter trip to medical facility
2. Training

Opportunity to rotate personnel meaningfully
Provide better scope and variety of tasks to develop higher conpetence
3. Costs

Provides better opportunity to compare costs and effectivenesss of different models
4. System

Cushions impact of poor selection of site for LHSC
Provides better opportunity for system demonstration because of additional
facilities and equipment that are not part of current models in
Florida, New Mexico, Utah, Misconsin, and elsewhere
Provides bc:tter planning data for other applications than afforded by one fixed facility

Provides better opportunity to compare capabilities of different modes
Cover larger area
Better evaluate future sites for facilities
5. Management

Better able to serve distant emergency

REVIEW OF THE LMSC SUMMARY OF IMBLMS PHASE C CONTRACT KICKOFF MEETING - DEC. 20, 1972

ACTION ITEMS AND RESPONSIBILITIES

I. SITE ANALYSIS

A. NASA/HEW Action

1. Mr. Tuiff - Request additional information from proposing communities.
a. Pennsylvania - Clarification of independent paramedic. : operations.*

* Site proposal refers to "Nurse-Practitioners."
b. New Mexico - Clarification of independent paramedic operations required.
B. LMSC Action

1. Revise the Site Analysis Plan Schedule and incorporate coments.
2. Release Preliminary Site Analysis Report 1/21/73.
II. PROGPAM MANAGEMENT AND CONTROL
A. LMSC Action
3. Work Breakdown Structure (WBS) accompanying write-up. No due date specified.
'2. Key Personnel Responsibility Definition. No due date specified.
III. COMMUNICATIONS AND DATA MANAGEMENT
A. NASA Action
4. NASA will provide LMSC with information on MEDICS program/ system. No due date (Ed Moseley).
5. NASA vill provide LMSC information on the NASA/SCI TV Viewing/ Diagnosis Study. Ho date (R. L. Lindeman)
B. Kickoff Meeting Items Needing More Discussion
6. The Data Management (Software and Hardware, GFE Package) meeting indicated that LMSC needs a lot more information on the Philco and Ed ioseley programming effort.

ACTION ITEMS AND RESPOMSIBILITIES
III. COMMUNICATIONS AND DATA MANAGEMENT. (Cont.)
:. RECOMMENDATION: LMSC should plan to have an LEC programer assigned to IMBLHS in Houston for approximately one year to work with Dr. Moseley/Philco/Varian on IMBLMS soft-
.- ware development. Then this man should plan to go into the field with the system for about one month on system start-up.

LMSC did not address this in the minutes of the meeting.
;
2. Data Management

On Video Recordings
a. Will all patient encounters be video taped?

- b. Will the video tape become a permanent part of the patient history?
: Boeing Answers:
a. Video tape capability will be included as a system feature. However, the physicians will decide what he wants taped.
IV. QUALITY ASSURANCE

Action Required:
General - No responsibility assigned - items requiring further investigation

1. Contamination control of gas systems
2. Certification of gases
3. Review of PRL for components criticality
4. On-site calibration equipment definition

No due dates assigned.

V. RELIABILITY

A. NASA - Dan Becker

- i. Failure Report Format definition - due 12/22/72

REVIEW OF THE LMSC SUMMARY OF IMBLMS PHASE C CONTRACT KICKOFF MEETING - DEC. 20, 1972

ACTION ITEMS AND RESPONSIBILITIES
$\ddot{\boldsymbol{Y}}: \quad$ RELIABILITY (Cont.)
B. NASA/LMSC Action
-1. Resolution of off-the-shelf equipment technical data acquisition. Combined action - no due date.
VI. SAFETY

NASA/LMSC Action

1. Resolution of off-the-shelf equipment technical data acquisition. Combined action - no due date.
VII. MEDICAL ASPECTS AND OPERATIONS

NASALMSC

- Resolution of patient referral philosophy - no due date.
* Add.G. Lab to identify area - specific medical problems which affect System Design Requirements.

1. The functions to be performed by the Data Management System are not well defined nor understood. There is a critical need for an in-depth. functional analysis. It is believed that KFI must perform this analysis in the near future in order to create a clear definition of data system needs. This problem was mentioned in the text but was not included as an action item.
$\because:$
2. The Data Management. System design definition is relatively vague. This problem is closely related to comment 1. above.
3. No data were presented for helping verify that adequate hardware is being proposed for the Data Management System, e.g., Varian 620 hardware may not be the best available because of relatively recent advances in hardware design.
4. Proposed development plans for the Data Management System were not available. It must be assumed that there are major development problembs because, historically, data systems always have their share. A detail development plan should be developed in the near future, e.g., level of manpower schedules for meeting critical milestones, etc.

A memorandum was prepared to point out unresolved topics in AHSFU development (HSSCC, MHU, Medical Operations, Communications, Data System, Training, and Administrative Functions).

The list served as a topic guide during a joint NASA/HEW/LMSC Interface Coordination and Planning Meeting held in Tucson, Arizona, April 26 and 27, 1973. It also provided a pre-meeting, agreed-upon IPO position on each unresolved item.
IMBLMS
NASA/HEW/LMSC
INTERFACE COORDINATION AND PLANNING (I/C/P)
April $26^{\circ} \& 27,1973$ DATE

UNRESOLVED AREAS - HEALTH SERVICES SUPPORT CONTROL CENTER

UNRESOLVED AREAS - LOCAL HEALTH SERVICES CENTER

Unresolved Items	Proposed Plan	Resolution
Equipment (Medical)		
Medical equipment associated with two examination/treatment rooms, emergency rooms, sterilizing room, pharmacy, film storage/derkroom, x-ray room, acute bed area, laboratory, cardiac emergency cart	-IMSS/IHS to review (jointly) PRL and current inventory to verify adequacy of equipment -IMSC to provide all interface requirements, installation and operating instructions, and other pertinent information for new items -IHS to work with IMSC for general equipment layout, locations, installation planning, facilities preparation, etc.	
Facilities		
Structures modifications and equipment installation	-Same as for HSSCC	
Changes to existing utility systems (air conditioning, electric power, plumbing, lighting, etc.) Personnel		
One system operator/maintenance technician Two physician's assistants One licensed practical nurse One lab/x-ray technician Ono secrutary/receptionist	-LMSC provide system operator/ maintenance technician -IHS provide 2 PA's, I LPN, 1 lab/ x-ray tech, and 1 secretary/receptionist -IHS to participate in LMSC generation of operating plan	

UNRESOLVED AREAS - IDCAL HEALTH SERVICES CENTER (Cont.)

Unresolved Items	Proposed Plan	Resolution
Services		
```Facility maintenance Reproduction Logistics support (records, stores, janitorial, etc.)```	-LMSC to define and provide special/ now requirements (skill, safety, tools, etc.)   -IHS to provide support services	

UNRESOLVED AREAS - MOBILE HEALTH UNIT

Unresolved Items	Proposed Plan	Resolution
Facility		
One tilt-cab vehicle   Equipment	-IMSC to provide	
Medical equipment for van	-LMSC and IHS to jointly establish requirements (review PRL for adequacy)   -IMSC to provide equipment (investigate IHS procurement capability)	
Emergency power undt	-IMSC to provide	
Personnel		.
One CHM (physician's assistant)   One lab/x-ray technicion   One Public Health Nurse (PHN)   One maintenance technician	(LMSC/IHS verify mix/functions)   -IHS to provide CHM, lab/x-ray technician, PHN   -IMSC to provide maintenance technician (shared with LHSC)	.
Crew accommodations	-LMSC/IHS to prepare a preliminary plan for crew accommodations (overnight stay, travel to and from MHU, meals, etc.	
Services		
Refurbishing supplies Electrical power Water Unsto disposal	-IHS will provide all medicil supplies and associated services	
Fucl (van and emergency power unit)	-IHS to provido fuel?	
Maintonunco of van and equipraont	-LMSC to provido maintenance	

UNRESOLVED AREAS - MEDICAL OPERATIONS

Unresolved Items	Proposed Plan	Resolution
Manpower Needs, Available Skills	-IHS to review previously agreed manning requirements and recommend changes   -IHS to outline capabilities of each type of IHS person involved in AHSFU to permit measure of training required and equipment match requirements	-
Equipment Availability at Santa Rosa (See LHSC)	-IHS/NASA to inventory medical equipment   -IHS to identify what will be in clinic for training and operations period	
GFE Equipment (Advanced Bioinstrumentation) - Contractual and operational considerations	-LMSC to draft strawman plan for providing capability to interface without basic system impact   -NASA/LMSC/IHS to review and modify plan as required	.
Health Service (LHSC and MHU)	-IHS to explain and clarity routine functions and provide health service	
Medical Evaluation Plan(s)	-IHS to provide (with NASA/LMSC assisting) requirements for this plan and schedule   -NASA/IHS to review and approve plan	
Patient's Welfare	-IHS/NASA/LMSC to identify possible actions in event of patient injury or complaint of service (legal, political, system impact, etc.)	





Unresolved Items	Proposed Plan	Resolution
Equjpment		
Varian 73 computers and associated software will replace the PDP-11/21 data concentrator   Bell Aerosystems facility modifications (to install antenna and transceiver to interface with the IBM 370 computer)	-LMSC to provide, on a lease/purchase agreement with a maintenance contract   -IMSC to design, install, checkout and operate this equipmont   -IHS to coordinate and make arrangements with Bell   -IHS responsiblo for interface between LMSC and Bell	
Terminal equipment in HSSCC, LHSC and MHU	-IMSC to provide and install where required	---
Hardware and software interface with IHS data system	-Project Manager (PM) for NASA and IHS to be appointed; NASA to assume prime responsibility for the interface and the interface cost	
Functional requirements definition for minicomputer software to operate AHSFU	-NASA prepare requirements and IHS review	
Functional requirements definition for minicomputer to operate Sells inpatient care	-NASA prepare initial requirements and IHS committee review, modify as required, and concur	
System and appiication requirements for minicomputer system	-NASA/LMSC define, implement, update and maintain for period of contract	-

UNRESOLVED AREAS - DATA

Unresolved Items	Proposed Plan	Resolution
Equipment, continued		
Terminal equipment for Sells   inpatient care system	-IMSC identify and instail after   concurrence by NASA and IHS (NASA   to fund)	
Data security function definition	-IMSC define, IHS concurrence	


UNRESOLVED AREAS - ADMINISTRATIVE FUNCTIONS

Unresolved Items	Proposed Plan	Resolution
Personnel Administration	-IMSC and IHS to outline personnel administration plan (job descriptions, housing, transportation, recreation, etc.)	
System Equipment Administration	-LMSC/IHS to administer equipment accountability, dispositions, maintenance, repairs, calibration, etc.	
Administration of Legal and Civil Matters	-IHS to provide for authorizations, licenses, permits, etc. (community, state, fedaral requirements)	



# WORKING MATERIAL <br> FOR CONSIDERATION IN ARRIVING AT AGREEMENTS <br> BETWEEN HEN, IHS, NASA, AND LMSC, <br> AS A RESULT OF <br> THE IMBLMS PROGRAM REDEFINITION 

MARCH 20, 1973

## I. REDEFIMITIO: OF THE SYSTEF

In accordance with the NASA/HEW program redefinition, the following areas are identified as requiring consideration for change:
A. Identify nev: system configuration

1. HSSC at Sells
a. Modification of existing facility (installation of physician's and operator's console and computer equipment
b. Provision for support trailer
2. LHSC
a. Modification of existing facilities for communications and associated equipment - microwave transceiver, antenna, and mount
b. Impact of these modifications on existing operations
3. Relay Stations

Location of site - modifications, additions, or construction, as required

Power
Access
Ownership and permits
(1) Logan (on site)
(2) Mt. Lemmon
(3) Kitt Peak (existing)
4. Tucson Computer Center

Authorization to install antenna, transceiver, and terminal Modification requirements (facility, electrical, and grounds) to install the equipnent in the Be,ll Aerosystems facility Impact on existing operations - staffing to operate this terminal
5. Mobile Health Unit (MU)
a. Define and explain the new friu concept and configuration
b. Base of operations
c. Route-schedules
d. Support requirements (utilities, waste handling, etc.)
e. Logistics
6. Litter Wagons (existing)

Impact of PAll installation and operation
B. Identify areas to be changed based upon:

1. Communications equipment
a. HSSC and LHSC
i. Loop assignments - authorizations and transmisstion path proving
(a) 2.1 G hz - voice loop (UHF)
(b) 7.7 Ghz video loop (one-way, receive at HSSC)
ii. Definition of power and grounding in existence
iii. Definition of additional Bell equipment and lines required
b. MHU

Definition of power availability and probable IVIU sites
c. Litter Wagons (existing)
i. Reservation coverage (identify areas of communication blackout)
ii. PAM installation and interface (power and isolation)
d. PAM
i. Relay or direct iink
ii. Maintenance (since PAM is GFE)
2. Medical equipment in MHU - Refer to marked-up PRL
3. Computer system

Computer hardware procurement (lease) and Maintenance Contract
4. Existing/additional facilities required

Define the existing facilities available and discuss additional facilities required such as support trailer, relay sites, and associated maintenance facilities
5. GSA vehicles will be required to support AHSFU operations
C. Identify software requirements/division and responsibilities

1. Discuss and define what software HEH, NASA, and LMSC will provide
a. Systems software
b. Applications software
c. Interface software (to facilitate interaction between IMBLP'S and HIS software and data)
2. In areas where original software must be developed, define who is responsible for the development
a. Responsibility for the production of interface software requirements and programs
b. Modification responsibility (maintaining and updating the software)
c. Define software configuration control techniques and modification methods and records to be maintained

## II. MODIFICATION OF THE CONTRACT (STATERENT OF HORK)

A. Rewrite basic contract
B. Rewrite subcontracts
C. Interagency agreements
(NASA/HEW)
A. Establish IHS/NASA/LMSC interface agreements

1. Resolve and identify point of single cominitment source on HEW/IHS and NASA/LHSC agency responsibilities
2. Define organization and communication structure for interfacing the participating groups to insure informational flow between NASN/LASC ... and HEU!/IHS
3. Subordinate communication interfaces in categories of interest, i.e., data management, facilities, provisions, or logistics, etc.
B. Agreement on schedule of milestones
4. HEW/IHS provide inputs to program planning and scheduling
5. . Program planning would include preparation of all program documentation
C. 1. Resolution of details in cost reduction and division
6. Cost considerations must include requirements for and procurement of medical supplies including replacement of consumables
D. Define and resolve interface on equipment specified or procured by LISC to be installed in IHS facilities including required agreements on procurement, maintenance, and operation of the equipment
E. Define organizational interfaces when LMSC personnel work in IHS facilities which are under the general supervision of the IHS. Establish a team concept for the participating parties to insure maximum program benefit.
F. When it becomes necessary to change the system to accomplish NASA goals, required changes will necessitate agreement from IHS/HEW personnel.

Such changes as protocols, equipment, or type of data being recorded and level of treatinent being administered, may be required to satisfy NASA system evaluation requirements. Define the type of agreement required to assure that the desired changes will be incorporated.
G. Discuss staffing, skill levels, headcount, definitions, and agreements
H. Program reporting plan

Define HEW/IHS and NASA/LISC program reporting plans for technical progress and contact status
I. Patient population, participation, and enhanced communication relations will be encouraged through presentations and informational releases by HEW/IHS

Determine the evaluation and coordination plan for the program to highlight HEW and NASA participation and define LPSC/HEN coordination to prepare a unified evaluation plan.
A. Effectiveness of hardware, software, and personnel
B. Evaluation and reporting will be required for NASA/HEN benefit
C. Resolve in addition report frequency, format, evaluation approach, and who submits this data
V. OPERATIONAL ASPECTS

Resolve which agency and who would obtain authorization or clearance for such things as rights-of-way or access, building permits and authorizations, licenses/permits for personnel and vehicle facilities, etc.

Impact areas as follows:

1. Communications system
a. FCC authorization
b. Facility modifications
c. Staffing
2. Relay station
a. Roadway
b. Right-of-way
3. Building permits
a. Land acquisition
b. Access
4. NHU
a. Licensing

Vehicle
Operator
b. Maintenance

## VI. KFI ROLE

2. Podification
©. Lentify the role of KFI
C. Assure that the previous responsibilities of KFI, which are not included in the residual role, will be picked up by LMSC or IHS

## VII. GENERAL ITEMA

A. Where LMSC and IHS personnel share the use of common facilities, equipment, or services, an agreement must be reached on how and what procedures are established to facilitate these features (joint occupancy rules and agreements)
B. Review the total logistics responsibility for operational supplies in terms of:

Provisioning, utilities, expendables, consumables, inventory, etc.
C. Overhead Operating Costs
. Resolve division of overhead operating costs
D. Responsibility for patient welfare and patient charges or medical fees must be resolved
E. Standby coverage and manning notification for off-duty

## VIII. AGREEMENTS REQUIRED

Items needing to be resolved:
A. New contract
B. Modified program planning documentation
C. Revised schedule
D. Define responsibilities and establish the roles of participants (NASA, HEV, IHS, and LMSC)

Definition of HEW/IHS role during:
Part I - Definition and Design
Part II - Assembly and Test
Part III - Operations and Evaluation
E. Obtain authorization to install system components

1. Relay station
a. Logan - right-of-way, building permit, access road, land acquisition, transmission path proving, FCC authorizations
b. Mt. Lemmon - addition of antenna and relay equipment on the existing tower, FCC authorization
2. Tucson Computer Center

Obtain authorization to install the AHSFU associated equipment
in the Bell Aerosystems facility

To: Norm Belasco, Chief, DE2
Subject: Engineering Review of the IMBLMS AHSFU Updated System Block Diagram, Revision B, Figure A-2

An engineering review was performed of the preliminary system block diagram (updated). This revie: indicated a need for additional modifications and/or additions, as follows:

1. Physician console does not include a CRT terminal. This capability should be provided to the physician to facilitate access and updating of patient history data.
2. KSR-35 teletype will be noisy and should be replaced by a thermal or electrostatic unit at the physician's console. A packet containing data on several improved keyboard units was provided to LMSC by mail on Jariuary 18 for consideration.
3. The physician console design concept must consider and include the capability for simultaneous 2-physician operation with separate monitors and audio (headset) capability.
4. The equipment shown in the "Equipment located in same room as physician and operator consoles" should be placed in the System Operator's room.
5. The ECG switching controls output line (to computer) has the arrowhead drawn in the wrong direction.
6. The block diagram does not reveal how $X$-ray data is transmitted to the HSSCC.
7. The diagram does not show what equipment utilizes the $X-Y$ plotter in the LHSC.


## DM:sg

## Comments on KFI Work S*:1.enivit

In response to your request, the IPO suggests tilat the work statement be revised to:

Add a personnel section which includes paragraphs on perscnnel auch as 3.7.1, Operation Plan.

Include physician personnol ir the personnel paragraph, per Table l, and make the personnel lists in paregreph 3.7.1 the same" with respect to RN's, PA's, LDN's, secretaries, and others. .. . $\because$

Include a qualif'ication statement for each specialty such as licensing for the physicians as appropriate, registration or licensing for personnel qualified as nurses, certification of physician's assistants by the state of service, the state offering the training, or the government when the physician's assistants are federally trained, murse practitioners be graduates of "expanded role" programs, and operators/technicians/maintenance personnel be qualified by training and experience to accept KFI training on AHSFU equipment.

Tae IPO feels that the LMSC INBLMS Medical Director should review the qualifications of all personnel proposed by KFI to man the syster and ascertain that those perscris who will make patient contacts are liberal in their epproach to médicel practice in rural ereas across racial, group and sociosconomic differences, as wnll as motivated to contribute personally to the improvenent of rural health care delivery.

The IPO feels that the total exclusion of HEW influence from the work statement is undesirable; HEW should be invited to participate in scheduled reviews andoffer advice and assistance but not be cast in the role of decision maker.

Tre IPO feels that the insurance plan for medical practice should be defined in ti!!s subcontract.

Comment on conterit of SOW:

### 1.1 Introduction

KFI responsibility to furnish farilities should be defined, as are persons services and materials.

## . 2.2.2 Surveiliance

Insert LMSC before. IMBLMS Progran Office.
2,2,3 Guidance
Insert LMSC before DNBLKS Program Office. One office should be prime in surveillance, rather than shared responsibility. See note c::
paragreph 3.7 .1 below.

## $1,2.5$ Technicel Information Releases

Modify the second sentence to incorpbrate the provision $n$... and will propi Lockheed the opportunity to meet NASA information release requirements and to mske suggestions ..." The IPO feels that HEW should function in this loop.
3.4 Preliminary Program Definition

In keeping with results of the kickoff meeting, the vord "measurement(s)" should be changed, wherever it appears, to "procedure(s)" or other less quantitative synonym.
3.7.1 Operation Plan.

Make the KFI medical administrator responsible to someone - perhaps LMSC DABLMS Medical Director.
3.7.2 Logistics Plan, 8.0 Packaging

Both cover packaging., Since neither stands along, it is suggested that the entries be made only once. It is further suggested that KFI ascertein whether the wobile facilities (MHSF, DA, and A) will require special packaging for storage and transit of medial equipment,perhaps of reusable nature, in the sense of medical instrument cases which may or may not be routinely furnished by the vehicle or equipment vendors. Examples are $x-r a y$, spirometers, and nicroscopes. Packaging in the sense of equipment packages that can be secured and used in transit, e.g., roauscitators, ECC equipzent, and IV stands, should be addressed in this or other procureaent
3.7 .2 Logisticg Plan

The next to lest paragraph should be recast to clarify the final clausa.

In the sentence. This topic is regarded as operations rather than logistics. The solution is too sicple - most repeat patients should return to the LHSC rather than be met by the MHS? or DA. The last paragrap is also regarded as operations in nature, and posaibly beyond the scope of the subcontract.
3.10.1 Training Plen

Change the first sentence to include medical and other persornel.
3,10.3 Training Equipment and Materigls
Change the last lime to include medical end other personnel.
5.0 Meeting Support

It is suggested that HEW be invited to meotings held during the operational phese.

### 8.0 Packaring

The reference to Las Cruces Hospital should be removed and the Control Center and remote sites should be added.

## Altachment $E$

Attachment $E$ was not available for IPO's review.
KFI Role in AHSFU - Part I

Item		KFI Subcontract (Part I)	Participation by HEW . ..	Impact
	Refine requirements	Formulate medical requirements	Guidance, review, and concurrence	No change required
	Preliminary plans - costs, configuration management, make-or-buy, documentation, engineering, assembly, program management, manpower allocation, subcontractor breakdown	Medical operations and logistics plan, medical cost plan	Guidance, review, and concurrence; assist in medical cost plan	No change required
	Preliminary design	KFI to support LMSC at PDR and CDR	HEW assistance in establishing requirements and concurrence in the final design (especially MHU)	No change required
	Cost estimate	Medical cost plan	HEW to provide cost estimates for medical operations; LMSC/KFI other	- LMSC to include but not generate medical cost data
	Site criteria, analysis, cost estimate, evaluation	None		No change required
	Revised cost estimates	Medical cost plan	HEW to provide cost estimates for medical operations; IMSC/KFI other	No change required


KFI Role in AHSFU - Part I Page 2			
Item	KFI Subcontract (Part I)	Participation by HEW :	Impact
Prelimjnary operations support plans installation and checkout, support equipment, facilities, training, logistics, maintenance, operational testing, evaluation and analysis	Medical operations and logistics plan	HEW guidance, review, and concurrence	No change required
Preliminary systems safety plan	Provide data to support safety analysis	HEW guidance, review, and concurrence	No change required
Preliminary quality assurance and reliability plan	Provide data to support QA and reliability planning, analysis	HEW guidance, review, and concurrence	No change required
Proliminary maintainability plan	Part of reliability plan	HEW guidance, review, and concurrence	No change required

Page 3

Item	KFI Subcontract (Proposed)	Participation by HEW. ${ }^{\text {a }}$	Impact
Acceptance test procedures	None	Guidance, review, and concurrence	No change required
Acceptance tests, major subassembly elements	Support with operating and medical personnel	Provide personnel, material, and reports	Tests performed by vendors and LMSC; system checkout by LMSC and HEW; LMSC and HEW furnish operations and medical personnel for installation and checkout
Acceptance test data package	None	Review .	IMSC (prime) must prepare data package
Update operational support plan	KFI to perform medical portion	Guidance, review, and concurrence	LMSC prime on update; HEW support
Fingl training plan	KFI to perform	Prime	HEW prime on all except oparational equipment training - contract change
Develop training aids and equipment	KFI to perform	Prime	Contract change to HEW dominance
Operations, maintenance, training manual	KFI to perform parts	Prime	Contract change to HEW dominance
Classroom training	KFI to perform	Prime	Contract change; LMSC to train operations and redical personnel in operational equipment only
Operational support training	KFI to perform	Prime	Contract chenge; INISC to play minor role in operator and maintenance training



Paft 2 - deeinition and desicn (continued)

IPO PIan			F1 Sun LMSC Plan					
Preliminary						Recommendation	Trade-0ffs	
Preiminary   pian. qualety assurarice plan art rellabllu-:\%asr.ta1:abllley plan	safety, quality assurance ard rellability planning and analysis	Guldance, review and concurrence	Provide LMSC with the necessary documentation to support quality assurance planning, safety and reliability ( $\mathrm{FMEA}^{\prime}$ s) analysis for KFI-procured equipment	Same as KFI, for IHS-providej equipment	LMSO plans for fIEW to provide documentation to support LMSC on HENprovided equipment	Obtain HEW participation ASAP	HEW is more krouledgeable of proposed test site	
Ue:1va	--.-. None - - - - -		Attend weekly manggement/technical meetings at LMSC; key NASA neetings such as PDR, CDR	Monthly meetings with LMSC; key NASA design reviews	LMSC plans for HEW to participate in monthly meetings at LMSC	Follow LKSC plan wath TPO attendance	Better progran coordingtion, tut high $\mathrm{c}==1 \mathrm{tment}$ of travel furis	
Pint 2 - SYSTR	ASSEMBLY, INSTALLATION AID ChECKOUT		Establish medical acceptance tast procedures, provide necessary medical personnel to support conduct of testing; participate in "ASA bay-off at INSC and at curflier; assist LMSC in preparation of checkcut procedures	Support medical and clitrical equiprent acceptance testing by NASA/LMSC onsite; review acceptance .test procedures;	IPO wants HEW concurrence on medical test procesures   ce   p-   drection	HEW shculy input to and approve medical eztuipgert test docuEentatien; KFI will propare ereticel tes: and checkout decu--mentntion	HEW will provide me:feal cperaticral sifpport deryedert 3, therefice =ust ser.cur with pripcej f:ctcecloirrccetures	
$\begin{aligned} & \text { neseptance } \\ & \text { tent pro- } \\ & \text { entres } \end{aligned}$	lione	Guidance, review and \| concurrence						
	Support with operating ar. 1 r.odical persornel	Provide personnel, paterial, and reports						
	Non:	${ }^{\text {Review }}$		testing; cperate and checkjut medical equip ment unjer NASA/LUSC				
	Perior=	Prine	Davelop training requirements/plan for madical personnel; 1dentify training eids/techraleus, personnel selertion critioria; develcp prel1mis.ry selectin: ard prcgram plan to provide overusu ar selec-1 tion ard tratreng, o dntermine counse diration/cirricula, and to provide training manuals and hand-1   Revie: trainirg requirements/piar for medicil persennel; review selestion and progra: plar; review :ratrin? currimhic; recumend required changes		IPC wants HEW :o train medical personnel; LUSC wents ! TrI to conduct the \|neJical trairing	MEN plar, provide trainirs zaterials a:.: tras mest cal perscrer.s1	Hed heas exis: ? treltare prees. a:       んㄴ․: darlieation	
\|a:ul:raert,								
-6\%:tces,								
过, classroon								

PhRT 2 - SISTEM ASSEMILY, instarlatidn and checkout (continued)

Iter	KFI Sub	HEW-IHS	KFI Sub	Dalta		
Medical equipmont procuresent	Purchnse medical equipmont consumables	Prime		IMSE wents KFI to procure medical equipment for the MHU	HEW should specify MHU medical equipment in MHU; KFI to procure and perform acceptance testing	Trade-Cffs   HEW will be the uger In Part 3; KFI will Bupport LvSG
PLET 3 - OPERLTIOHS			1			
$\begin{aligned} & \text { cerational } \\ & \text { aipport } \end{aligned}$	Provide modicai operations	Joint: HCW/medical; LMSC/communications and data		No LMSC plan	Joint responsibility (IIEW/LMSC)	
$\begin{aligned} & \text { Lesistics } \\ & \text { sipport } \end{aligned}$	Provide modical supplies, ar.d personrel	Primo	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	No LMSC plan	HEW rosponsibility	
$\begin{aligned} & \text { F!:al gistem } \\ & \text { furcor=m:e } \\ & \text { sasessyert } \end{aligned}$	:One	Prime for medical	I Support medical   I analysis/evaluation   1 during 2-year opar-   1 ation		Joint: NASA/systems; HEW/mediced	
	Provide medical cost	Prime for medical	1 Update medical operI ation plan, opera$\left.\right\|^{\text {tional cost }}$		LUSC/TEW respons1bility	
$\begin{aligned} & \text { Yestical } \\ & \text { cs:s gement } \end{aligned}$		!	1 Provide medical man1 agement, operation lof AllSFU under dirf ection of pinysicitin	No IPO plan	Follow LNSC plan	

HA-60-140

110	Equlonent scuurce	Sources	$\left[\begin{array}{c} \text { Priority } \\ \text { Po. orste } \\ \text { (M. Muset }) \end{array}\right.$	$\underbrace{\substack{\text { in-Huse }}}_{\text {avallobility }}$	$\begin{aligned} & \text { 1vallidility } \\ & \text { to ime M } \\ & \hline \end{aligned}$	Interface Logistics	Power	$\begin{aligned} & \text { Interface } \\ & \text { Action } \\ & \text { Anent } \\ & \hline \end{aligned}$	Contractor	$\begin{aligned} & \text { Contractor } \\ & \text { chief Tech. } \\ & \text { Monltor } \\ & \hline \end{aligned}$	Paxarts
bacterial Sensor	coddisd STC	or. Piceioto	0.	Der. test at Goddard	Dec. ${ }^{13}$	Fower for oparation; freciing storage for chemicals		hasa	In-house		Require Aner. Inst. Cem-51cw Photoreter (5320) and a single channel $5-\mathrm{HV}$ recorder ( $\$ 1,090$ ). Require procurerent of Trig. and f.ep. also. Centrifuge or fllter destrable.
Co Malyzer	Jsc	Or. Herels	n+	Prototype 3/73	nate Uncertain	$\text { Air, } 30 \text { psi, vacuum, }-5 \text { psi. }$   rower for operation	$\begin{aligned} & \text { Hov, } \\ & \text { sini } \\ & \text { (ceek }) \end{aligned}$	nesa	AEC-Unfon Carbide KAS 1-1187A	c. 0. scott	Prototype in el inical test at JSC (5/73). Fteld units will not require vatuum nor compressed alir. Development of eapendable. preloaded rotors required.
Blood Pressure monter	stylut (Jsc)	nolte	*	Eurrent	$\sum_{\text {unit }}^{2 / 284} \text { (backup }$	Requires gaseous nitrogen for cuff. 90 to 210 psi		resa	$\begin{aligned} & \text { SCI - Martin } \\ & \text { BAS } 8-24000 \end{aligned}$	gien telcote	Camerctal nodels operate fron 110 volts and use $25-100 \mathrm{pal}$ gas.
microblal toad monitor	JSC (R80)	Or. Ferguson	H	1/74	1/74	Fower for operation: speciall. packajed media	i80	NUSA	McDonnell-   Douglas NAS 9-	Cliff Aldridge	design in formative stage. will require special media.
Ergoneter	Stylab (JSC)	Lem	0	Current	$\begin{aligned} & 2 / 74^{27} \text { (backup } \\ & \text { unt } \end{aligned}$	Power for operation	$\begin{aligned} & 28 v: 164 \\ & (\text { peak }) \end{aligned}$	rasa	1 n -touse ( NsFC )	Fene Bond	Too complex and quantitative for qualitative application.
Proit Anslyzer	Stylab (JSC)	Booner	0	current	current	Power for operstion	28v, 25x	nosa	$\left\lvert\, \begin{gathered} \text { SC1-martin } \\ \text { nAS } 8-24000 \end{gathered}\right.$	E. LaRue	Commerctal model oferates on 110 volts. Shylab rodel telemeters data for recording on ground. Recorder uses $1 . \pi$.
IEC CAD and Amplifier	Stylat (JSC)	Booher	0	Current	Curren!	Power for signal conditioner; refrigerated storage for Cap; Interface with frost Andiyzer And lyzer	$\left\lvert\, \begin{aligned} & 15 \mathrm{y} \\ & \left(\begin{array}{l} \text { from } \\ \text { indyzer }) \end{array}\right. \end{aligned}\right.$	nasa	$\left.\right\|_{\text {nas } 8-24000}$	E. LeRue	Comnercial model operstes on 110 volts.
Digtul thermometer	Skylab (JSC)	Bob Bond (JSC)	$\ldots$	Current	Current	Hone		HESA	$\left.\right\|_{\text {nAS }} ^{\mathrm{sCl}} 9.9190 \text { (HSC) }$	Yick	aith different probe. Frocured by Heconneli-Douglas Rang: - 400 D . to $+: 200$ F .
call counter .	Skylib (Jsc)	0.9	${ }^{*}$	8/73	$1 / 74$ (Oual. Test Uniti.	Power for operation	288; 5 K	NASA .	Beckman   NRS 9-13469	Jeck Kalsh	Can count red cells, white cells, and platelets, Have 28v. llov, and tattery-powered aptlans. Amy unit miy be preferable.
slloe Stainer	Stylab (JSC)	Day	$\cdots$	Current	2/74	Stain replacement only .		N.SA	Beclman HAS 9-12473	Jack Kalsh	Mansal operation and timing 4 lbs. $\mathbf{4}^{-0} \times 5^{0} \times 9^{9}$. Stalos one slite at a tinice. Stein tire is sbout 5 min . Fiuld: meaed oy plungers. Manual redientshrent of stains and maste revolal. Gram and wright stains.
Vectortardlegrat (K6)	Shylab (JSC) USC (RSO)	Lintott	0 0.	Current	2/74	Power for operation. Recorde for record.	$\left\{\begin{array}{l} 28 y_{i}+1001 \\ -10 v+5 v: \\ 354 \end{array}\right.$	\%ersa	Hartin-Marietta (Denver) HAS $8=24000$   In-house	Marty costello	Qual. 2 Dutu. Trng. + backup untes. JSC sumplies electrotes - harness. VCG systen produces 3 leads 8 heart rate dispiay updated ea. 5 herrtbeats. Leads not displayed on ooard. Requite printout a display.
Oisplay 1 Milysis	JSC (R80)	Or. nopher	0	current		Require computer		nen	in-house	(Horfier)	Automated system performs analysis, corcutes vectors, displays loops, and will give printed interpretation at some future date. This program (VCcia:l) is one of aind similar to Veterans Administration (floberger) program. Alternative is manual analysis ard interpretation.
roteare	JSC ( $\mathrm{R}+0$ )	Pool	$\cdots$	$1 / 3$	1/76	Requifes ambulance interface fur iull uaz. кaüio requency allocation. Freon replacement.	Self- cuni inen rechen recher- bate batery	nASA	$\begin{aligned} & \text { SCI } \\ & \text { NA5 } 9-13295 \end{aligned}$	VICK	liay be in use prior to ensfu start at Papago Reservation.
Pulcenary flow mien	Jse (R00)	Rumal	$0-$	$1 / 14$	1/75	Power for operation	130 O	HASA	Quantum   Dyndmics   iiAS 9-11585	Ltu	Has integral displays and printouts. Is actually a cavelete $\because$ resplratory onalysls system.
Iv flutd derlee	usc (a+0)	Day	0	ก่ 14	Fir 75	Mone IMeily	Sce   Hintes	nASA	not selected	-	Rrp stage. . vill use self-suppilid pressure.
Asplistor	3sc ( $\times \cdot 0$ )	Day	$0-$	ir 14	Fr 75	Probsbly 2avoc	$\left\lvert\, \begin{aligned} & \text { see } \\ & \text { Hotes } \end{aligned}\right.$	nasa	Not selected	-	RFP stage. Probably battery pomered.
portable otiplay entry Device	use (R.0)	Mosoles	0	ก 16	T 76	Crmputer interface design necessary		Masid	not selected		Consept stoge. Linsc may design computer interiase for mains.



BACTERIAL SENSOR' (GODDARD SPACE FLIGHT CENTFR)

## Technology Utilization; Dr. Picciolo 301-982-2121 In-House Program

Require table, 110 -volt power, microbiological hardware, and a $\$ 900$ photer: $=$ =r (Amer, Inst. Cem-Glow).

Centrifuge or filter desirable.
Only DuPont makes sufficiently pure reagents from fireflies.
Chemicals require frozen storage.
Cost of determination is 80c.
Sensitivity is $10^{3}$ organisms/ml.
Readout is on photometer scale.
Recorder ( 5 mv ) desirable. Can manually read photometer scale.
Not working on automated model.
Use hand preparation of samples.
Are working on both centrifuge and filter preparation of samples.
Do not know which is preferable.
A device is still at Johns. Hopkins in clinical trial.
Could furnish automated model if funded. Want funding for photometer recorser $(\$ 1,000)$, training, travel, other costs such as centrifuge, filters, etc.

Photometer 110 V -- 160 W
Recorder - 110V -- 200 W
Centrifuge $\quad 110 \mathrm{~V}-\mathrm{5} 500 \mathrm{~W}$ (oversize); floor mount required
Filter llov -- 550 W (Lab vacuum)
Heater 110V -- 500 W

# GØ. ANALYZER (R\&D) <br> Dr. Harris 

Requires power, listed below.
Is currently self-sufficient (displays, printouts).
Basic components are suitcase portable.
Requires resupply of reagents, probably preloaded into expendable rotors. Components:

	$V$	W	A (Peak)	Wt.
Analyzer	110		2	
Oscilloscope	110	14		30 lbs.
Printer	110		1/2	© 15 lbs .
Loader	110		$3 / 4$	(d 20 lbs
Wash Station	110		1/2	@ 10 1bs.
Rotors	---		0	(0) 0 bs.
Computer	110		TBD	Not present

Two items to be delivered for laboratory clinical tests in 1973 at JSC. Analyzer uses 2 amps only while heating.

Washer uses air at +30 psi and vac at -5 psi.
Desire computer to read IBM card printout (program conversion requireci).
Eleven chemistries available; 9 enzyme.
Can be hand loaded.
IMBLMS availability date uncertain.
C. D. Scott; Wayne Johnson 615-483-8611 (Union Carbide at Oak Ridge;

Contract No. NASA T-1187A; AEC 40-259-71

## BLOOD PRESSURE MONITOR (SKYLAB)

> (JSC) (Nolte)

Skylab version requires 28 -volt power, gives digital display and analcy sienal
 ground. Consists of cuff, microbione, preamplifier, pneumatics, and display. Not packaged - is rack mounted.

SCI commercial models are for 110 -volt operation, are packaged, and give both analog and digital outputs.

Three are on hand. Unit cost is \$3,000.00.
Others may be on order.
Use Skylab models gaseous nitrogen, 90-210 psi.
28-volt models on hand. Backup unit available 2/74.

Power
for
Monitor

28 V DC
23 W (avg.)

```
JSC
SCI
Martin-Marietta (Denver)
Nolte
Vick
Talcott
```

Contract No. NAS 8-24000

# MICROBIAL LOAD MONITOR (R\&D) <br> (JSC) (Dr. Ferguson) 

Design is in formative stage. Will give quick response, automated, C\&S data. Will require specially packaged media. Prototype availability likely 1/74. IMBLMS availability possible 1/74.

## JSC

McDonnell-Douglas
Contract No. NAS 9-11877

Dr. Ferguson
Cliff Aldridge

## PROGRAMMED ERGOMETER (SKYLAB) <br> (MSFC-Developed)

Ergometer can be programmed to supply any of several loads or to load to a selected heart rate or to a sequence of heart rates.

Ergometer operates on 28 volts DC.
Watt-minute indicator operates on 5 volts $D C, 0.4$ amperes.
Ergometer interfaces with cardiac monitor, VCG, or other pulse driver.
Ergometer requires 16 Watts (peak).
JSC Engineer Lem
MSFC Engineer Gene Bond
Units currently at JSC.
Backup unit available to IMBLMS 2/74.

## FROST ANALYZER (SKYLAB) <br> (JSC) (Booher)

Interfaces with cap and signal conditioner.
Interfaces with tape recorder and sleep level SCR.
Operates on 28 volts DC.
Commercial models are packaged and operate on 110 volts.
Outputs are analog tape of EEG and EOG with gaps for head movement, also chart of sleep pattern by time and stage.

JSC	Booher
SCI	Howard Vick
Martin-Marietta (Denver)	E. LaRue
Baylor	Frost

Power requirements - $28 \mathrm{VDC}, 25 \mathrm{~W}$ or $110 \mathrm{~V}, 25 \mathrm{~W}$.
Items currently at JSC and currently available for IMBLMS.
Contract No. NAS 8-24000.

EEG CAP AND AMPLIFIER (SKYLAB)
(JSC) (Booher)
Power for signal conditioner from analyzer.
Interface with Frost analyzer.
Refrigerator storage for cap.
New, cheaper cap being developed by SCI, Frost patent.
JSC Booher
SCI Howard Vick
Martin-Marietta (Denver)
Baylor
E. LaRue

Frost
Skylab model operates on 15 volts from analyzer, powered by 28 VDC. CMCL analyzer operates on 110 volts, similarly powers the cap preampifier.

Skylab model records all data on tape.
Outputs are analog EEG, EOG and null time when head is moving, also chart of sleep pattern by time and stage.

Power requirements are included in the analyzer power requirement.
Items currently at JSC and currently available for IMBLMS.
Contract No. NAS 8-24000.

## DIGITAL THERMOMETER (SKYLAB)

Environmental monitoring model.
Range is $-400^{\circ}$ to $\$ 200^{\circ} \mathrm{F}$.
Could change probe and give body temp to $0.1^{\circ} \mathrm{F}$.
Battery powered (replaceable).
Wattage trivial.
Availability - uncertain. Prototypes at JSC. Procurement only by McDornell-Doueg. Items used in SMEAT.

JSC Bob Bond
SCI Vick
Contract No. NAS 9-9190.

## CELL COUNTER (SKYLAB)

Performs cell counts.
Lysis permits WBC count.
RBC and platelet estimation to be provided.
Army unit may be preferable.
Have $28 \mathrm{~V}, 110 \mathrm{~V}$, and battery powered options. 5 watts.
Sample is collected, diluted, and cells counted by impedance changes as they pass electrodes.

Beckman development.
Jack Walsh, monitor.
JSC - Day
Items to be in-house by $8 / 73$.
Qual test unit available to IMBLMS 1/74.
Contract No. NAS 9-12473.

## SLIDE STAINER (SKYLAB)

## (JSC)

Beckman development; Jack Walsh, Mgr.
Does Wright and Gram stains.
Manual operation and timing.
Zero-g.
Stands alone.
4 lbs.
$4 \times 5 \times 9$ inches.
Stains one slide at a time.
Stain time is about 5 minutes.
Fluids moved by plungers.
Manual replenishment of stains.
Manual removal of waste reservoir.
JSC Engineer - Day
Backup unit on hand.
Backup unit available to IMBLMS 2/74.
Contract No. NAS 9-12473.

Need electrode harness assembly; subject interface box; electrical umbilical; electronic module (ESS) for power, calibration, timing, test, and amplification. 4 power supplies.
+28V Calibrate Signal
+10V Operate
-10V Operate
+5 V Heart Rate
35 W constant power.
$3=X, Y, Z$ channels and
1 = Heart rate channel produced

4 channel recorder on ground

On Board = Digital H.R. display only.
$X, Y, Z$ telemetered. Also H.R.
Are qual, DVTU (recovery); DVTU (Hoffler); training and backup units 2/74
Ground based program for loop display + . vector calculation and interpretation and printout is separate.

Martin-Marietta (Denver) - Marty Costello
Need oscilloscope display of loops:
Computation for vectors:
Measurement for intervals, amplitudes, slopes, durations, intercepts and rates. Contract No. NAS 8-24000.

5/31/73

## 3-D VCG DISPLAY

Computer program is used for automated computation of vectors and display of loops.

Now performed on CDC-1108.
Goal is to have complete analysis with interpretation.
Program name is VECTAN.
Program is similar to the Veterans Administration (Pipberger) program.
Without this device, physician can read charts of the three leads, compute vector and make any desired measurements. VCG's on tape can be displayed on scope, and loops can be photographed.

VECTAN now in use.
Complete analysis by computer may be available about mid-1975.
Manager: Dr. Hoffler.
Duplication of program for use elsewhere would require some 9 man-months.
In-house program.

TELECARE (R\&D W/SCI) PAM

```
Consists of:
 Suitcase
 Batteries (rechargeable)
 Drugs
 Oxygen
 Semi-automatic B.P., (Auscultatory)
 Stethoscope
 EKG & Display
 Defibrillator *
 External Pacing
 Fluid Aspirator (Freon powered)
 AMBU Resuscitator
 Airways
 Laryngos cope
 Interface to Ambulance Transmitter
 UHF Transmitter for EKG & Voice to the Ambulance
Weighs }35\mathrm{ pounds. Is free-standing.
JSC - Dr. Pool
SCI - Howard Vick
Available to JSC 7/73.
Available to IMBLHS 1/74.
Contract No. NAS 9-13295.
```


## PULMONARY FLOWMETERS (R\&D)

```
Dr. Liu, Quantum Dynamics (turbine flowmeter)
Will require llo-volt power.
Wattage - not established.
Displays and printouts are integral.
Total device is respiratory analysis system with mask, one-way valves, mass
spectrometer, mass flow measurement + timers, counters and computers.
JSC Dr. Rummel
Quantum Dynamics Dr. Liu
Available to JSC - 1/74.
Available to IMBLMS - 1/75.
```

Patent: NASA-CASE-NSC-13436-1; N72-20113.
Contract No. NAS 9-11585.

# IV FLUID DEVICE (ZERO-G) (JSC) (Day) 

Free-standing; activated by self-supplied pressure.
Formative (RFP) stage. Not under contract.
Probably available in prototype FY 74 and in quantity in FY 75.

## ASPIRATOR

(JSC) (Day)

Free-standing in concept,
Formative (RFP) stage.
Probably available in prototype in FY 74 and available to AHSFJ in F: 75. Will probably be electrically powered ( 28 V ).

## PORTABLE DISPLAY ENTRY DEviCE (JSC) (Moseley)

Concept stage. Not under contract.
Probably available FY 76.
Requires computer interface.
Battery powered.
LMSC may design computer interface for IMBLMS.

## DRY EKG ELECTRODES

(ARC) (Dr. Sandler)
Currently available.
No logistic problems.
Require dry electrode signal conditioner and power supply.
Utilizes FET's in electrode, plus signal conditioner in box which could become a biobelt fixture.

In-house program.
Expect to have commercial source in CY 73.

# ULTRASONOSCOPE <br> (ARC) (Dr. Sandler) 

Fomative stage.
Microwave link-up (TV transmission).
Two prototypes on hand.
Power requirements - TBD.
No current availability.

PULSE DOPPLER BLOOD FLOW
(ARC) (Dr. Sandler)
Formative stage.
This device is pulsed, not continuous like the Franklin-Rushmer device, and will give volum:e flow instead of velocity. Not revealed whether tinis is an invasive device.

Two prototypes.
Availability projected.
Power - not established.
Project inactive pending relocation of principal investigator from Europe to

BONE ANALYZER
(ARC) (Dr. Sandler)
Ready 1974.
Will be made available.
Employs a radioactive source. Isotope license required.
Free-standing.
One-of-a-kind.
Isotope is in a source box. Scanner is on the other side of the bone. Princip: is radiation absorption. No injection.
28-volt flight model.
110-volt laboratory model.
PI is Cameron, U. Wisconsin.
12 months to produce a test item.
Power requirement not defined.

# COMPUTER-BASED PULMONARY FUNCTION TESTIAG <br> (ARC) (Dr. Sandler) 

Available 1975.
Now being demonstrated in San Diego VA Hospital.
One-of-a-kind.
Power requirements - not defined.
Contract Mo.
Monitor - John Billingham (ARC).
Tech. Monitor - John West.
Contractor - Perkin-Elmer.
This is a very large device with a computer. It may be out of place in a smar: facility.

## SWALLOWABLE TEMPERATURE ENDORADIOSONDE

(ARC) (Dr. Sandler)
Ready 1974.
Inexpensive - cost not prohibitive.
Could be produced in the quantity necessary for clinical use.
Require tracking-receiving device (telemetry)
Self-contained battery and transmitter. Briadcast range is 1 to 2 feet. Will improve to 5 to 10 feet.

Contractor - EPH Konigsberg.
Contract No.

# VISION TESTER (HAYNES) <br> (ARC) (Dr. Sandler) 

Could be loaned and demonstrated.
Two items are currently available.
Probably no logistic support requirement or interface obstacle.
Power requirements -
In-house program. Commercial source being developed. No contractor. No contract number.

Investigator - Jampolski.
Monitor - Dick Haynes.

IMSS MODIFIED (SKYLAB)
(JSC) (Chassay)

Incubator not usable in l-g because of side loading unless modified as for S:ERT. Power requirement $28 \mathrm{~V}, 1.55 \mathrm{amp}$ (peak), $1-3 \mathrm{amp}$ (steady).

Microscope, head-mounted light, otoscope and ophthalmoscope require spare batteries and bulbs.

Incubator requires $\mathrm{CO}_{2}$ source such as Alka-Seltzer and water. . In-house program.
Excellent packaging for medical items.

## STEREOMETRIC DETERMINATION OF BODY SHAPES

(JSC) (Whittle)

## Requires:

Camera
Grid
Film Processing
Film analysis by manual or automatic devices
Manual or automatic computation
Alternate analysis could be effected elsewhere if images were transmitted electronically or by mail.

Film-making and processing at site could be circumvented by TV cameras rendering TIRR-Baylor (Houston) - R. E. Herron.

Contract No. NAS 9-11604.

## PLASMA ELECTROPHORESIS

(JSC - Kimzey)

This is a conceptual experiment for Skylab which was not developed．Ir－incuse prototypes were built by attaching micro－cells to batteries to effect sミここraこior， and determination of immunoglobulins，isoenzymes，and other plasma fracticns． A flight item might be built that would weigh about two pounds．

Use in IMBLMS would require a development cycle．
Systems used in in－house prototypes were Beckman．
This would be a very austere version of a sophisticated，useful clinical cevice． It would be of $10 w$ practicality in a clinic for ambulatory patients where immunology patients，heart attacks and injury patients would be referred．

# PORTABLE DEFIBRILLATOR AND EKG DISPLAY (JSC) - (Day) 

This device would be a flight prototype of the telecare item which would be lighter and more portable.

JSC - Day.
Contractor - SCI or other.
Contract No. - none assigned.

# COMIIENTS ON "A PROPOSAL FOR A MEDICAL RESEARCH SEMI-TRAILER VAN" BY 

 CAPTAIN G. R. McCAHAN, JR. DVM, U. S. ARMY AEROMEDICAL RESEARCH LABORATORY
## INTRODUCTION

This proposal was reviewed at IPO request to determine its relevance and applicability to the IMBLMS program. Although this paper is called a proposal, it is actually a fairly complete, well engineered and planned preliminary procurement specification.

## RECOMMENDATIONS

It is recommended that this proposal be used as a guide in the preparation of the Mobile Health Unit (MHU) portion of the IMBLMS Statement of Work (SOW). In addition it should be provided to Lockheed Missiles and Space Co. (L.MSC) to be used as a guideline in preparing the MHU specification and the Medical Coaches subcontract SOW.

## DISCUSSION

All the contents of this paper which are applicable should be considered for inclusion in the MHU specification. The Boeing comments are of three types:

- A. Enthusiastic agreement with the section as written.
B. Elaboration or expansion of existing areas.
C. Additions necessitated by unique MHU features.

The comments are arranged by sections, as follows:

## Section I

A. Scope

This section with some modification and additions is directly applicable to

IMBLMS. A generalized description of the MHU should be provided here and a comment on intended utilization of the MHU included.
B. This section contains an excellent guide to what should be included in the MHU specification or SOW.

## Section II

## 1. General Physical Configuration

a. The statement on "good riding quality" should be better defined for the MHU specification (i.e., riding qualities equivalent to DOT Standards for Ambulances). Equipment shock mounting requirements should also be specifically defined.
b. The statement on vehicle leveling capabilities ("when stopped on less than $10^{\circ}$ slope, the unit must be capable of being easily leveled") should be included (p. 2).
c. The provision for vibration limits on environmental conditioning equipment is excellent and should be used (p.3); however, noise levels of NC-60 are excessive and should be limited to NC-40 or lower.
2. Insulation specifications should define rate of heat transfer or stabilized temperature gradient through the roof and walls, in addition to the statements on insulation fire resistance, packing or settling. (p. 4).
3. Communication tower specifications are particularly applicable to the MHU and should be included ( $p, 7$ ).
4. Door specifications are considered to be extremely important and considerable effort should be exerted by LMSC to assure that this portion of the specification is detajled and adequate (p.9).
5. Suspension, clearance, axle loading and braking capability (normal and emergency) should be carefully considered and defined. The emergency braking system should be a warning feature which will alert the operating personnel of malfunctions or failures (p. 11).
6. Wind loading requirements are very important features and certainly should be included (p. 13).
7. The environmental conditions (p. 18) are considered to be acceptable as written and should be included in the specification.
8. Electrical requirements (p. 18 and on) -
a. The MHU will probably not require the use of 208 V 3 -phase service; however, the provisions of the National Electrical Code (NEC) should be met in all cases.
b. Lightning protection and grounding provisions should be clearly defined. These features were not addressed in the paper.
c. An emergency 12 V system should be specified in the treatment area to provide lighting and patient support in case of primary electrical system failure.
d. Illumination should be used in place of lighting intensity and luminance (pages 19 and 20). In addition, supplementary provisions for 200'-çandles lighting by spotlights should be provided in the exam area.
e. Internal Environmental Control System (IECS) - The IECS shall provide required environmental conditions inside the MHU over a normal exterior ambient temperature range of $100^{\circ} \mathrm{F}$. to $-10^{\circ} \mathrm{F}$. and over an extended range of $+130^{\circ} \mathrm{F}$. and $-30^{\circ} \mathrm{F}$. The inside temperature shall be maintained at $75 \pm 3^{\circ} \mathrm{F}$. over the normal range and $75^{\circ} \pm 8^{\circ} \mathrm{F}$. over the extended range.
f. Emergency Motor - Generator capability must be sized consistent with the MHU intended utilization and fuel availability at the site of intended use.
9. Ancillary Equipment (p. 23 and on) - The L.P. gas system should be evaluated and considered if L.P. gas is available at the Papago site.
10. A powered winch should be a mandatory piece of ancillary equipment. (None was specified in this proposal.)
11. The water system drains and freezing protection features should be considered mandatory specifications, (p. 26).
12. The medical modules concept (p. 29 and 30 ) and the storage and locking features appear to be very desirable and should be given favorable consideration for inclusion in the MHU specification.
13. The locations of all service connections and filler caps should be carefully defined to provide safe, efficient service with minimal impact upon system operations and patient handling.
14. Oxygen and breathing air systems cannot utilize petroleum lubricated pumps. controls. regulators. or fittinos. regardless of the filtering techniques employed.
15. Throughout this paper the word "adequate" was used several times to define a level of performance. Better methods of level performance definition are required.

## Section III

Performance, test, and evaluations (p. 32 and on)

1. The sections on General Provisions, Examination of the Product Dimensions and Weights, Mechanical Inspection, and Manuals, are very complete and should be used as a guideline in defining the MHU SOW or specification. Some wording changes will be required because of unique MHU features, however, the intent and scope of this section should be fully met.
2. Vehicle Performance Testing
a. A set of roadability and handling tests should be defined as part of the MHU acceptance tests. These tests involve:
(1) Interstate roads
(2) Two-lane asphalt highways
(3) Graded gravel and unimproved roads
(4) Off roads (sand and loose gravel) and sloped field
(5) Turning radius tests
b. Maximum and minimum load tests should be specified with $90^{\circ}$ crosswind components (of 30 mph wind velocity) at normal driving speed on improved roads. Maximum and minimum load configurations. should be defined as part of the test specification.
3. Medical treatment configuration set-up, operational readiness checks, and retrofit for moving tests should be specified in general agreement with section E (p. 38 and on).
4. Weather testing is a must and should include dust exposure (fine sand, wind-blown).
5. Continuous operations testing (p. 42) for a span of 24 hours is considered to be adequate and should certainly be specified.
6. Delivery, final acceptance, warranty, and correction of deficiencies sections are considered to be adequate and should be included in the MHU specification.
7. An evaluation of MHU patient handling capabilities must be included in the performance testing prior to delivery. This evaluation should be conducted using normal patient loading and include admittance, preparation, processing, and release activities.

March 13, 1973
To: DA/Chief, Bioscience Payloads Office
From: $\quad$ DE/Chief, IMBLMS Program Office
Subject: Request for Review of Preliminary Study
Reference: DA-73-M067

Attached herewith are the comments resulting from a review of the Life Sciences Flight Research Program - Preliminary Study.

Norman Belasco

Subject: Review of Life Sciences Flight Research Program for the Space Shuttle Program - Preliminary Study

Reference: Request for Review of Preliminary Study, DA-73-M067, dated February 8, 1973

## INTRODUCTION

This review was accomplished by Boeing Life Sciences in accordance with Contract NAS 9-11756, Task 1.3.

The document provides an excellent background overview and present status of the proposed Life Sciences Flight Research Program. To facilitate this review, an abbreviated outline was prepared and is attached (see Appendix).

## COMMENTS

1. The document is informative on existing program plans but is totally lacking in definition of a plan for the organization of the Life Sciences Research Program. Specifically, the document does not mention any organization similar to the existing research efforts involving Principal Coordinating Scientists and/or Principal Investigators.
2. The research plan is based upon the candidate experiments program for a manned space station ("Blue Book").. The "Blue Book" should be updated and corrected to reflect current life sciences state-of-the-art knowledge.
3. No plan was outlined, suggested, nor requested which would accomplish the dissemination of data or informational transfer between participating agencies.
4. The document was vague about the assignment of roles, about the various NASA centers, and the responsibilities associated with these roles and assignments.
5. The document did define technical paper and information useful as working paper (objective no. 1); however; it was totally lacking in the definition and suggestion of an organization (or approach) to accomplish the management of the research program as was defined in objective no. 2.

## RECOMMENDATIONS

The subject study is a quite thorough exercise which describes in exquisite detail ways of developing representative payloads for the variety of 'flight opportunities which are conceived to become available.

The reader will develop answers to nearly all the questions for which answers can currently be projected. Updating can make it more useful. It is suggested that a future version accomplish these objectives:
A. Describe a less micrometabolic evaluation than is outlined on p. 3.8.
B. Leave open an option to refurbish and refuel the Tug in orbit rather than recover or relaunch it' (p. 1.4).
C. Redesignate titles of crew members, i.e., Pilot and Copilot are considered passe', should be Commander and/or Pilot (p. 3.2).
D. Consideration be given to the five comments above for inclusion in subsequent documentation or reissue.
E. Typographical errors should be corrected:
pps. vi, vii, 2, $1.8,1.10,3.2,3.4,3.5,3.7,3.8,3.15$, $3.23,3.25,3.27,3.28,3.31,3.32,3.35,3.37,3.45,3.47$, and 3.55 .

sg
Attachment (9 pages)

## APPENDIX

MEMO 5-2720-HOU-3-234

## STUDY OVERVIEW OF THE LIFE SCIENCES FLIGHT RESEARCH PROGRAM FOR THE SPACE SHUTTLE PROGRAM - PRELIMINARY STUDY.

## I. BACKGROUND

A. Scientific Payload Planning
B. Flight Opportunities

1. First manned orbital test flight
2. Carry-on
3. Shared sortie lab
4. Dedicated sortie lab
II. OBJECTIVES - The objectives of this document are:
A. Provide working paper for the development of specific life sciences payload planning guidance.
B. Provide a basis for developing an approach to the management of the research program for the Space Shuttle.
III. ORGANIZATION
A. Part I - Framework for research - vehicles and missions; examination of mission configurations.
B. Part II - Sortie lab life sciences flight research program
5. Examine aspects of short duration low orbit space flight
6. Life sciences payload definition and integration study
C. Part III - Candidate studies by flight opportunities

Examination of research opportunities associated with various flights
IV. RECOMMENDATIONS FOR STAFF ACTION
A. Staff Actions

1. Review this study as a working paper
2. Submit comments to MMS (Headquarters)

## B. Staff Review

1. Study is based upon Blue Book - therefore, it contains errors
2. Review of Part I - to consider revisions in assessment of flight opportunities
3. Review of Part II - to consider accuracy and sufficiency of life sciences program as described
4. Review of Part III - to consider the "factors influencing the revision" as well as the "options and general characteristics"

## PART I - FRAMEWORK FOR REVISION

I. MAJOR COMPONENTS
A. Booster, unmanned, solid propellant, soft landing (parachute)
B. Orbiter - orbital altitude, internal payloads
C. Orbital Laboratory - carried in the Orbiter payload bay

1. Shirt sleeve environment
2. Man-tended experiments with modifiable protocols
3. Where possible, use conventional lab equipment (apparently does not separate from the Orbiter)
D. Sortie Laboratory - will remain with the Orbiter during Orbiter flight, carried in payload bay
4. May be extended from the bay
5. May be exposed by opening the payload bay doors
6. Draws power from the Orbiter
E. Research and Applications Module (RAM) - Minor Itemis
7. Free-flying laboratory
8. Carried to orbit in the payload bay
9. Supporting power and crew accommodations
10. Will be revisited and resupplied by the Orbiter for crew changes and maintenance
F. External Pallet - Used with sortie lab or RAM
11. Operated EVA or remotely
12. May be small automated unmanned research satellite (retrievable)
G. Space Tug - Reusable Propulsion Vehicle
13. Low orbit to high orbit boost
14. Moon or planet boost
15. Return to Orbiter after use
H. Modular Space Station - Consists of a number of RAM's

Long-term sophisticated programs
II. FLIGHT OPPORTUNITIES
A. Carry-on Flight Opportunity

1. When life sciences research experiments are placed upon nonlife sciences Shuttle missions
2. Flights during which the payload bay is maintained empty or unavailable for life sciences research
3. Carry-on experiments-would be conducted in the Orbiter crew/ passenger compartment
a. Utilizing Orbiter electrical power
b. Utilizing Orbiter data management
B. Shared Sortie Lab
4. Laboratory space and resources are shared by two or more disciplines.
5. Shared mode decision factors
a. Experiment requirements (power, environment, etc.)
b. Compatibility of experiments
c. Total weight of experiments and support gear
d. Time-line compatibility
C. Dedicated Sortie Lab
6. Entire lab dedicated to life sciences research
7. Offers most space and all resources to support experiment

## 3. Simplified Planning

4. Liberalized schedule and protocol
D. Shared/Dedicated Sortie Lab

After full operational development of the Shuttle, these options may be interchangeable; however, in this study, the shared sortie lab opportunity will be considered as a single flight opportunity occurring prior to the dedicated sortie lab.
III. FACTORS INFLUENCING SCOPE AND DIRECTION OF LIFE SCIENCES RESEARCH
A. Carry-on Flight Opportunity

1. Scope of life sciences effort constrained by primary mission objectives
a. Must be compatible with flight test operational requirements
b. Compatible with Shuttle weight and balance, hatch sizes, interior dimensions, etc.
c. Places minimum demands on Shuttle power, environmental control, communications, and data
d. Simple tie-in structure/systems
2. Special case: first orbital test flight
a. One or more orbital flight test plans
b. Pilot and copilot only
c. First zero-G experience with the Shuttle
d. These factors will affect any life sciences research effort proposed for the first Shuttle orbital flight
3. Subsequent development flights prior to sortie lab
a. 7-Day orbital missions of physical sciences disciplines
b. Payload bay will not be available to life sciences research
c. Carry-on life sciences experiments will be limited to the crew/passenger area
d. Two scientist passengers per mission
e. Acceptance of a life sciences carry-on payload will not dictate a requirenent for a life scientist passenger
f. A mission specialist/payload scientist will be on board (3-man crew)
B. Sortie Lab Flight Opportunities
4. Vehicle Capacity and Resources
a. Payload bay dimensions $15 \times 60^{\prime}$
b. Adequate electrical power, environmental control, data collection/management for any anticipated life sciences experiment (except human centrifuge)
c. No major constraints anticipated
5. Mission Duration
-a. 7-Day misstions (5-day orbit-work-period)
b. 30-Day mission (28-day orbit work period)
6. Orbital Altitude and Inclination
a. Low orbit ( 300 nautical miles)
b. Circular, Equatorial, or Polar orbits
c. Below Van Allen Belt; however, will be exposed to the South America Anomaly and the Polar radiation environments.
7. Reentry/Landing Flight Profile

Low level of $G$ accelerations
5. Non-astronaut Crew Members - Early sortie missions will have attendant rigorous selection/training standards for scientist/ candidates
6. Multi-member Crew - Complex array of psychophysiological functions, social adjustments, and group dynamics will have to be considered
7. EVA - New applications will require development of improved iife support systems and mobility aids
8. Teloperations - Manipulator techniques will have to be developed to play a role in payload deployment and retrieval

## PART II - SORTIE LARGE LIFE SCIENCES fLight research program

I. INTRODUCTION
A. Suitability

1. Short Duration - Low Earth Orbital
2. Excluding experiments involving penetration of the Van Allen Belt and extended duration space flight
B. Visibility

Except for centrifuge, some level of all areas of the overall life sciences research program will be involved
C. Research Goals

1. Detailed information on psychological adaptation to zero-G -and re-adaptation to a l-G environment
2. Improved teloperator techniques, methodology, and instrumentation
3. Improved EVA systems and techniques
4. Improved design and method for life support systems in extended space flight
5. Development of man's role and effectiveness in performing research tasks in the orbital laboratory
6. Selection criteria and free-flight training/indoctrination of scientist-crew members
7. Assessment of ionization/radiation hazards
II. RESEARCH OBJECTIVES AND CANDIDATE STUDY AREAS
A. Functional Program Elements (FPE's)
8. FPE No. 1-Medical research (human)
9. FPE No. 2 - Vertebrate research (non-human)
10. FPE No. 3-Plant research
11. FPE No. 4 - Microorganism and cell tissue culture
12. FPE No. 5-Invertebrate research
13. FPE No. 6 - Life support and protective systems research
14. FPPE No. 7-Manned systems integration

## part ili - candidate studies by flight opportunities

I. CARRY-ON FLIGHT OPPORTUNITIES

## A. First Orbital Flight - Special Case

## 1. Factors

a. First opportunity to observe crew stress to fully operational Shuttle mission
b. Limited crew size (pilot and copilot)
c. Requirements for medical flight operations support
(1) Monitor crew for physiological changes
(2) Evaluation of Orbiter man-system interfaces
(3) Evaluation of Orbiter life support
(4) Environmental control and habitability
2. Study Options

There is no "requirement" for life sciences research per se on this test flight.
3. Candidate studies for first orbital test flight

Studies of this type are possible only if an additional medical crew member is accepted.
B. Shared Sortie Laboratory Flight Opportunity

1. Factors Influencing Research Studies
2. Mission Objectives
3. Candidate Studies for First Shared Sortie Laboratory
C. Dedicated Sortie Laboratory Flight Opportunity
4. Factors influencing the research effort
5. One week dedicated sortie laboratory mission FPE's 1, 6, and 7
6. 30-Day dedicated sortie laboratory mission involving FPE's 1 through 7

To: Norm Belasco, Chief, DE2<br>Subject: Results of Life Sciences Payload Development. Committee Meeting, Jan. 8-12, 19:73

## Space Shuttle Payload Analysis

Modular Space Station (MSS) mock-ups in Building 9 were examined on January 8, 1973, in the company of John Mason, Charles Walkinshaw, Vernon Bailey, and others.

These mock-ups represent some of the modules that might be carried by the Space Shuttle. None was outfitted as a Life Sciences module, but life support features were present (non-functional) such as food preparation, shower bath, waste disposal, and exercise. Utilities available were area lighting and a comfortable environment. For use, utilities would be necessary, as well as functional consoles, experiment hardware, and, probably, a more substantial floor. Some live loads such as experiments with plants, invertebrates, and vertebrates, including mammals, would be needed; and, at some stage, a simulated or actual data system will be important in providing visualization in three dimensions of concepts undergoing Concept Verification Testing (CVT).

A meeting was called by John Mason on January 9 to discuss plans for Block II CVT in the Building 9 mock-up. Attendees included Mas on, Walkinshaw, Bailey, Simmons, Hoffman, Mangold, and Grave. The Chairman proposed a new name for the Committee to render it invulnerable to possible directives terminating efforts in specific areas such as Space Shuttle, Biosatellite, etc., that would not be intended to invalidate the function of the Committee in attempting to provide realism and economy in future biological and medical activity in the space environment. The suggested name is "Life Sciences Payload Development Committee". Agenda for the Committee include:

1/9-1/30 Arrange for removal of irrelevant consoles.
Move in Life Sciences equipment from any available sources.
Crystallize initial protocols and their sequence
2/1-2/28 Begin experiment timelines for histology, radiation, and mi crobiology.
3/15 Introduce macro (animal and plant) experiments and micro experiments (tissue and cell cultures).
3/23-25. Begin analytical procedures.

The level of testing is described as Block II. Block I testing on a similar module developed by GDA is scheduled to start on $1 / 15 / 73$, at Ames Research Center. The mock-up is to be refined and shipped to MSFC for a continuation of the Block I effort at MSFC. The MSC Committee will examine the mock-up while at MSFC. Effort will be made to obtain Life Sciences hardware from mock-ups for earlier programs including Skylab.


Approved by N.W. Marred for 1/19

## cg; sg

MEMORANDUM
T0:
DAI2/Chief, Bioscience Payloads Office
FROM: $\quad$ DE2/Chief, IMBLMS Program Office
SUBJECT: LSP Experiments Program Plan

In line with our objective of developing planning material which defines the needs of the LSF Program, a proposed program plan for LSP Experiment Identification and Selection and Principal Investigator involvement has been developed. A copy of this planning material is attached for your review and comments.

This material represents preliminary conceptual level of development only as it was done under our Boeing contract (fir. Lewis) and our resources have been spread very thin. I believe, however, that it will serve to illustrate the level of detailed planning that can and should be done to support our contention for the role of lead Center for the LSP program.

Per our earlier discussions, I will be able to provide a presentation of this plan at our next LSP committee meeting.

Norman Belasco
Enclosure

LSP Experiments General Program Concepts

Provide for Solicitation of Individuals, Institutions, Agencies, etc.

- Define needs of the program
- Define and outline basic approach
- Plan and schedule the activities
- Administer the program

Resolve and Formalize a Structure for:

- Submitting recommendations for experiments
- Selecting and incorporating experiments
- Disseminating information
- Utilizing results of findings

Provide Program Visibility
What - Material/content of the information to be disseminated
Who - Institutions and individuals requiring visibility
How - Media of presentation or display of information
When - The schedule for preparing and presentation of various types of information

Define and Formalize the Roles and Responsibilities of NASA Centers, Participating Institutions, and Individuals

- JSC study and propose
- Centers review and concurrence
- NASA HR approve and authorize release
- JSC prepare formal documentation


## MAJOR ACTIVITIES DESCRIPTION

0 Develop Plan for Solicitation of Involvement of Appropriate Individuals, Institutions, Agencies, etc., from the Scientific Community

This plan will be developed and documented to be used as the prime reference for those participating in the LSP Experiments Program. This basic plan will:

- Define the needs of the program
- Define and outline the basic approaches for accomplishing the solicitation, proposal, selection, and incorporation of experiments and P.I. involvement
- Provide a sequence and schedule for the major program activities
- Define the needs for and outline the administrative approach for all aspects of the program.

This plan will define the experimental areas to be included - starting with the broad fields of life science (morphology, anatomy and microanatomy, embryology, physiology, ecology, biophysics, biochemistry, genetics) and progressively refining the detail of definition until specific individual experiments are identified. It will suggest the type and nature of experiments sought in each field, along with general objectives, constraints, etc.

Based upon a review of the results of several recently completed studies and program planning efforts, a summary of past and present involvement of various institutions, NASA, and industry, along with how the effort fits into the overall LSP development plan, will be prepared. This summary will become a part of the baseline information for planning new activities.

The plan will identify and describe the approach to identify experiments and principal investigators. It will describe the types of involvement expected or desired, who (institutions, agencies, individuals) would be involved, and the scope and schedule for this involvement.

The plan would reflect the policies that currently exist and additional policy positions that will be required relative to the selection of experiments and participants, assignment of responsibility, organizational structure, program funding, program objectives, approach., benefits, and utilization of results, etc.

0 Resolve/Formalize Structure " for the Reconmendation, Selection, and Incorporation of Experiments or Scientists into the LSP Program

A major activity involved in development of the basic plan will be defining. a proposed system (structure) including management plan, organizational structure, documentation procedures, and directives. The plan would provide for the generation, submittal, and processing of proposed experiments, for the review and acceptance/selection of proposed experiments, and for the incorporation of selected experiments into the LSP experiment program.

- This portion of the plan will describe the mechanics and organizational structure for implementing the train of events (along with what, who, and how) from the invitation to submit a proposed experiment to the final incorporation of selected experiments and Principal Investigators into the LSP program.

Sample forms for requests, submittals, evaluation, acceptance, incorporation, etc., will be developed. Proposed roles and responsibilities of organization (NASA and others) participating in this activity will be described.

0 Develop a Program to Provide Visibility

The task of providing good program visibility to all persons involved in the program is of significant importance. Visibility ranging in detail from the program information required by NASA Headquarters personnel to the detailed information useful to the scientist proposing an experiment must be presented in many forms to suit the variety of needs of the program.

A general approach to providing the visibility will be defined which identifies:

1) The types of information to be presented to various people.
2) The media and materials to be used in delivering the information.
3) A method of measuring the effectiveness and provisions for maintaining adequacy of the information system.

- A brief study will be conducted to define the various types of information that would be required or desirable to the many individuals who would be involved in the program in such roles as administrator, review board member, Principal Coordinating Scientist, or. Principal Investigator.

The program for providing visibility will require a well conceived sequence of contacts be made to accomplish proper program indoctrination - the who and the order as well as the media to be used in disseminating information.

In making the determination of who the proper personnel to be contacted are and what experiments should be included, a progression of policy and approach meetings will be held. In-house NASA/JSC meetings will be held initially to discuss specific functions, roles, and responsibilities, with subsequent meetings including other centers (but more extensively MSFC and Ames). The NASA Center meetings would define in summary form the category of life science experiments that need to be defined and set some priorities for seeking experiments and scientists in various discipline areas.

The preparation of materials to provide program visibility would be preceded by a thorough effort to assure a well planned program - a clear understanding of what needs to be communicated, to whom, and the best way to accomplish the job.

Information would include summary information on the Shuttle Program, the Life Sciences Payload Program, and more specific information relating to the individual experiments. Prospective research participants or P.I.'s would be provided with such information as the objectives, scope, and constraints of experiments to be performed, as well as information on the mechanics of getting an experiment included in the LSP program and the details of developments of that experiment from acceptance throughout the preparation and operations phase of the LSP flight mission.

0 Define and Formalize the Role and Responsibilities of NASA Centers; Participating Institutions, and Individuals

The activity will provide NASA Headquarters with a well conceived plan for administering the program and will define for all participants their roles and responsibilities.

This plan will be formulated in preliminary form by JSC. After review and concurrence of the involved NASA Centers, it will be reviewed for approval by NASA Headquarters. After NASA Headquarters approval and authorization for release, JSC will prepare all necessary formal documentation required.

Instrumentation approaches taken by IMBLMS for advanced Space Stations and by General Dynamics/Convair (GD/C) for the Space Shuttle were compared.

The first five sheets show similarities and differences within the biomedical areas for spectrophotometric, gasimetric, and pneumographic analysis; also slide preparation and serial physiological chemical analysis. The succeeding fourteen sheets are GD/C computer printouts which add details of application and cost estimates. The terminal five sheets are appended to show that use of only four items from IMBLMS, JSC R\&D, and Skylab would save an estimated $\$ 2$ million in developmental costs for a Space Shuttle Sortie Laboratory. Three of the items selected are in the Skylab launch of May 1973.

Although they have not been studied, similar savings are anticipated in the man-system integration area.

A more intensive analysis could reveal additional significant savings in these and other areas.
MEASUREMENT

requireo For now-autonaten andlyses in clinical and
research applicationis in selecteo fpe 's.
5/11/73
5/11/73

REQUIRED FOR SUPPORT OF FHYSIOLOGICAL RESEARCH IN SEVERAL
FPE'S, ALSO ENVIRONMENTAL MONITORING IN ALL FPE'S.
5/11/73

MEASUREMENT




SLIDE STAINER

fPE - BIOMEDICAL
IMBLMS

STAINING FOR OPTICAL EXAM, DATA
EXTRACTION, KEYSOARD ENTRY, AND
VIDEO TRANSMISSION

2371
7327
5/11/73

> REQUIRED FOR CLINICAL AND RESEARCH, APPLICATIONS IN BIOCHEMISTRY, ENZYME CHEMISTRY, ELECTROLYTES IN
> SELECTED FPE'S.
MEASUREMENT










$-\infty$




B. Life Sciences Payload Development**

A brief comparative analysis was conducted on measurement techniques and equipment associated with the General Dynamics/Convair (GD/C) computer printout generated for MSFC and the IMBLMS methods for performing measurements common to the biomedical functional Program Element (FPE). The measurements in other FPE!s in the GD/C printout that have commonality with biomedicine, especially vertebrate and life support, were also examined. The analysis revealed that several items from MBLMS, Skylab, and JSC R\&D Programs have potential utility in the Shuttle laboratory. Among these are zero-G operable hardware including the $G \emptyset$ analyzer, slide stainer, mass spectrometer, and cell counter, all of which can be used as core equipment with no additional development cost, and result in a developmental cost reduction of $\$ 2$ million from the current estimates. Three of these devices are in the ' 73 Skylab launch. The results of this analysis were presented by IPO at a weekly Payload Concept Committee Meeting.






In accordance with IPO request, an analysis was performed on the GD/C Final Report "Life Sciences Payload Definition and Integration Study", Volumes I, II, and III, dated May 1973, Contract NAS 8-29150.

Comments based on this analysis are contained in Attachments $A$ and $B$. Attachment $A$ represents those comments concerned with format and organization. Attachment B concerns comments on content and rationale.

## TOTAL STUDY CRITIQUE

1. Quite comprehensive.
2. Usually very intelligible.

## SUGGESTED IMPROVEMENTS

1. Supply acronym list for each volume.
2. Give rationale for different appellations for payload, crew, and research EC/LSS. (EC/LSS, LSS, ECS, PLSS, EC/LSPS, LSPS, ECS/LSS, organism ECS, LS subsystem test unit, et al). The functions did not appear to be sufficiently different to warrant different titles, nor were the different titles consistently applied, nor did the data categories on page 7-22 show a protective aspect (LS/PS) beyond what is expected of the EC/LSS for payload and crew.
3. Consider a shift in categories of organisms such that enzymes and substrates are not given a cellular classification. It appears that this table is based on handling technique, rather than taxonomy, which leads to several inconsistencies. (Page 10-3).
4. Add manipulation to the functions requiring light on page 10-4.
5. Provide for protectioi. of optics from food, saliva, urine, feces, hair, etc., on page 10-6 and elsewhere that TV and photography are considered.
6. Make schedules on pages $10-9,10-17,10-23,10-29$, and $10-33$ more alike so they seem to come from the same report (use and meanings of nouns and verbs). Add a documentation category to those which do not have this listing (except as implied under design or other word which subsumes documentation).
7. Put dimensions in Figure 10-4.
8. Rectify discrepancies between pages 10-19 and 10-22; possibly elsewhere, on use of silica gel.
9. Change status remark on page I-65 to something meaningful.
10. Make an apparent and consistent distinction between crew mobility aids on pp. I-82 to 95 and crew restraint on pp. I-96 to 110 .

TOTAL STUDY

1. Quite comprehensive.
2. Usually very intelligible.

## SUGGESTED IMPROVEMENTS

1. Supply an acronym list. Each volume needs one.
2. Give rationale for use of LSS or EC/LSS (environmental control/life support system) for non-human payloads, LSS or EC/LSS for human payloads, but EC/LSPS (environmental control/life support and protective system) for test bed data. The functions did not appear to be sufficiently different to warrant a different title, nor were the different titles consistently applied. See page references for suspected inconsistencies.

Volume I, Management Summary

1. Table 1-1, change Manned System Integration to Man System Integration.
2. Para. 2.2.13, LSS Test Unit. This paragraph presents a paradox in lumping LSS, EC/LSS, PLSS, and LS/PS under the specific title of LS Subsystem.
3. Compare LSS, PLSS, EC/LSS, and LSPS on page 2-7 with $E C B, E C / L S S$ on page $3-1$, ECS and EC/LSS on page 3-2, EC/LSS on page 3-3, ECS on page 3-4, LSPS on page 3-7, LSPS on page 3-8, EC/LSS on page 3-9, ECS and EC/LSS on page 3-11, EC/LSS on page 3-12 for organisms and crew (contradictory to earlier definition), EC/LSS on page 4-1, LSS test unit on page 4-4 (contradictory term), LSS on page 5-1 equated with LS/PS on page 5-2, LS/PS on page 5-3 and 5-4, LS/PS on page 6-3, EC/LSS on page 6-5 (contradictory term), organism ECS on page 7-2, organism ECS/LSS on page 7-4, and organism ECS on page 7-4.

## Volume II, Studies

1. Compare ECS on page viii, ECS and LS/PS on page $i x$, ECS on page $x$, all used consistently with EC/LSS used somewhat differently on page xi and xii, EC/LSS on page 1-2, LS/PS on page 1-3, LS/PS on page 1-6, LS/PS on page 1-7, LS/PS on page 1-8, EC/LSS on page 1-9, LSS on page 2-1, LSS on page 2-6, EC/LSS on page 2-7, EC/LSS on page $2-8, E C / L S S$ on page 2-9, LSS, EC/LSS, and LSPS on page 2-10, LSPS on page 2-10a, LSP on page 2-13, LSPS on page 2-14, LSPS on page $2-15$, LSPS on page $2-16$, the latter meaning life support subsystem test unit, ECS on page 3-1, EC/LSS on page $3-2$, ECS on page $3-3$, ECS on page $3-5$, EC/LSS on page $3-5$, ECS on page 3-8, EC/LSS and ECS on page 3-9, EC/LSS on page 3-11, ECS on page 3-12, ECS on page 3-13, ECS and EC/LSS on page 3-14, EC/LSS on page $3-15$, EC/LSS on page $3-16$, LS/PS on page $3-25$, LS/PS on page $3-30$, LS/PS on page 3-31, EC/LSS on page 3-39, ECS on page 3-44, EC/LSS on page 3-47, EC/LSS on page 3-48, EC/LSS on page 4-1, LSS and EC/LSS on page

* 4-2, LSS on page 4-5, EC/LSS on page 4-6, LSS on page 4-7, LSPS on page 5-1, EC/LSS on page 5-4, EC/LSS on page 5-6, LS/PS on page 6-12, LS/PS on page $7-2$, LS/PS on page $7-18$, LS/PS on page $7-19$, LS/PS on page 7-20, LS/PS on page $7-21$, LS/PS on page $7-22$, LS/PS on page $7-23$, LS/PS on page $8-3$, EC/LSS on page $8-12$, ECS on page $10-1$, ECS on page $10-5$, ECS on page 10-18, EC/LSS and ECS on page 10-19, ECS on page 10-22, ECSS on page 10-23, and ECS on page 10-24.

2. Change Table 1-3, page 1-8, (changed manned to man).
3. Consider treatment of the Thermal Control Subsystem as part of the ECS (pages 3-40 to 3-45) although it has separate components.
4. Show that the data categories on page $7-22$ have a protective aspect rather than life support alone. This is not obvious.
5. Consider a shift in categories of organisms on page 10-3..such that subcellular elements such as enzymes and substrates are not given à
cellular classification. It seems that this table is based on handling technique rather than taxonomy.
6. Add manipulation to the functions requiring light on page 10-4.
7. Provide for protection of optics on page 10-6. (Urine, feces, hair, food, saliva, etc.)
8. Make schedules on pages $10-9,10-17,10-23,10-29$, and $10-33$ more alike so they seen to come from the same report (use of nouns, verbs, etc.). Add a documentation category to those which do not have this listing (except as implied under design or other word which entails documentation).
9. Put dimensions in Figure 10-4.
10. Adjust discrepancies between pages 10-19 and 10-22 on use of silica gel; elsewhere, if it occurs.

## Volume III, Appendices

1. Compare LSS on page iv, LSS on page I-2, EC/LS on page I-135, EC/LSS on page I-361, EC/LSS on page I-362, EC/LSS on page I-396, LS/PS on page I-414, LSS and PLSS on page I-414, LSS and LS/PS on page I-415, PLSS and LS/PS on page !-416, LSS, PLSS and LS/PS on page $[-417$, LSS on page I-418, LSS and PLSS on page I-419, and LS/PS on page I-420.
2. Make an apparent and consistent distinction above a JND between crew mobility aids (I-82 to I-95) and crew restraint (I-96 to I-110). Failing this, lump them.
3. Change status remark on page $1-65$ to something meaningful.
