1,439 research outputs found

    Joint testing of genotypic and gene-environment interaction identified novel association for BMP4 with non-syndromic CL/P in an Asian population using data from an International Cleft Consortium

    Get PDF
    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common disorder with complex etiology. The Bone Morphogenetic Protein 4 gene (BMP4) has been considered a prime candidate gene with evidence accumulated from animal experimental studies, human linkage studies, as well as candidate gene association studies. The aim of the current study is to test for linkage and association between BMP4 and NSCL/P that could be missed in genome-wide association studies (GWAS) when genotypic (G) main effects alone were considered.We performed the analysis considering G and interactions with multiple maternal environmental exposures using additive conditional logistic regression models in 895 Asian and 681 European complete NSCL/P trios. Single nucleotide polymorphisms (SNPs) that passed the quality control criteria among 122 genotyped and 25 imputed single nucleotide variants in and around the gene were used in analysis. Selected maternal environmental exposures during 3 months prior to and through the first trimester of pregnancy included any personal tobacco smoking, any environmental tobacco smoke in home, work place or any nearby places, any alcohol consumption and any use of multivitamin supplements. A novel significant association held for rs7156227 among Asian NSCL/P and non-syndromic cleft lip and palate (NSCLP) trios after Bonferroni correction which was not seen when G main effects alone were considered in either allelic or genotypic transmission disequilibrium tests. Odds ratios for carrying one copy of the minor allele without maternal exposure to any of the four environmental exposures were 0.58 (95%CI = 0.44, 0.75) and 0.54 (95%CI = 0.40, 0.73) for Asian NSCL/P and NSCLP trios, respectively. The Bonferroni P values corrected for the total number of 117 tested SNPs were 0.0051 (asymptotic P = 4.39*10(-5)) and 0.0065 (asymptotic P = 5.54*10(-5)), accordingly. In European trios, no significant association was seen for any SNPs after Bonferroni corrections for the total number of 120 tested SNPs.Our findings add evidence from GWAS to support the role of BMP4 in susceptibility to NSCL/P originally identified in linkage and candidate gene association studies

    Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate

    Get PDF
    Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10-6<P<10-4) in a test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.26×10-7 in a test for GxETS interaction. SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.79×10-7 and P = 1.98×10-7 in a 1 df test for GxE interaction. Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and WDR1 should be considered as candidate genes for CP. © 2014 Wu et al

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Inverse association of antioxidant and phytoestrogen nutrient intake with adult glioma in the San Francisco Bay Area: a case-control study

    Get PDF
    BACKGROUND: Increasing evidence from epidemiologic studies suggest that oxidative stress may play a role in adult glioma. In addition to dietary antioxidants, antioxidant and weak estrogenic properties of dietary phytoestrogens may attenuate oxidative stress. Our hypothesis is that long-term consumption of dietary antioxidants and phytoestrogens such as genistein, daidzein, biochanin A, formononetin, matairesinol, secoisolariciresinol and coumestrol, may reduce the risk of adult glioma. METHODS: Using unconditional logistic regression models, we compared quartiles of consumption for several specific antioxidants and phytoestrogens among 802 adult glioma cases and 846 controls from two study series from the San Francisco Bay Area Adult Glioma Study, 1991 – 2000, controlling for vitamin supplement usage, age, socioeconomic status, gender, ethnicity and total daily calories. For cases, dietary information was either self-reported or reported by a proxy. For controls, dietary information was self-reported. Gender- and series- specific quartiles of average daily nutrient intake, estimated from food-frequency questionnaires, were computed from controls. RESULTS: Significant p-values (trend test) were evaluated using significance levels of either 0.05 or 0.003 (the Bonferroni corrected significance level equivalent to 0.05 adjusting for 16 comparisons). For all cases compared to controls, statistically significant inverse associations were observed for antioxidant index (p < 0.003), carotenoids (alpha- and beta-carotene combined, p < 0.05), daidzein (p = 0.003), matairesinol (p < 0.05), secoisolariciresinol (p < 0.003), and coumestrol (p < 0.003). For self-reported cases compared to controls, statistically significant inverse associations were observed for antioxidant index (p < 0.05) and daidzein (p < 0.05). CONCLUSION: Our results support inverse associations of glioma with higher dietary antioxidant index and with higher intake of certain phytoestrogens, especially daidzein

    Multiple Interferon Stimulated Genes Synergize with the Zinc Finger Antiviral Protein to Mediate Anti-Alphavirus Activity

    Get PDF
    The zinc finger antiviral protein (ZAP) is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV), the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs) resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function

    Diversity of Matriptase Expression Level and Function in Breast Cancer

    Get PDF
    Overexpression of matriptase has been reported in a variety of human cancers and is sufficient to trigger tumor formation in mice, but the importance of matriptase in breast cancer remains unclear. We analysed matriptase expression in 16 human breast cancer cell lines and in 107 primary breast tumors. The data revealed considerable diversity in the expression level of this protein indicating that the significance of matriptase may vary from case to case. Matriptase protein expression was correlated with HER2 expression and highest expression was seen in HER2-positive cell lines, indicating a potential role in this subgroup. Stable overexpression of matriptase in two breast cancer cell lines had different consequences. In MDA-MB-231 human breast carcinoma cells the only noted consequence of matriptase overexpression was modestly impaired growth in vivo. In contrast, overexpression of matriptase in 4T1 mouse breast carcinoma cells resulted in visible changes in morphology, actin staining and cell to cell contacts. This correlated with downregulation of the cell-cell adhesion molecule E-cadherin. These results suggest that the functions of matriptase in breast cancer are likely to be variable and cell context dependent

    Targeting tumor-associated macrophages by anti-tumor Chinese materia medica

    Get PDF
    Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy
    corecore