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Abstract

Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk
factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios
ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for
GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide
polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring
WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco
smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes
were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual
period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs
mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (1026,P,1024) in a
test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.2661027 in a test for GxETS interaction.
SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.7961027 and P = 1.9861027 in a 1 df test for GxE interaction.
Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations
for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and
WDR1 should be considered as candidate genes for CP.
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Introduction

Nonsyndromic cleft palate (CP) is a common birth defects and

has a complex and heterogeneous etiology, involving both genetic

and environmental risk factors [1]. The prevalence of CP is about

1/2500 live births, much lower than the 1/1000 live births

prevalence for nonsyndromic cleft lip with or without cleft palate

(CL/P). About half of all CP cases have another congenital

anomaly or represent a recognized malformation syndrome, with

the remaining half representing isolated nonsyndromic CP cases

[2].

Genetic risk factors play an important role in the etiology of CP.

A recent twin study in Denmark showed heritability of CP is as

high as 90%, and the proband-wise concordance rate for CP

among monozygotic twins was much higher compared to dizygotic

twins: 33% vs. 7% [3]. Both family studies and population based

studies have identified multiple candidate genes associated with

increased risk of CP, including FOXE1, ALX3, MKX, PDGFC, and

SUMO1 [4–6]. However, evidence of association between reported

candidate genes and CP remains inconsistent. Compared to the

candidate gene approach, genome wide association studies

(GWAS) have the advantage of providing better coverage of the

human genome and are unbiased from a genetic perspective.

Although several GWAS have identified strong signals at several

chromosomal regions in multiple populations for CL/P [7–11],

the variants controlling risk of CP have proven more difficult to

find.

A few studies of CP have investigated potential GxE interaction

for candidate genes and maternal exposure to cigarette smoking

[12–14]. Environmental tobacco smoke (ETS) has also been

reported to interact with certain SNPs to influence the risk of

nonsyndromic CL/P and CP [15–20]. However, the evidence of

GxE interaction has been rather inconclusive [21]. Possible

reasons for the difficulty in documenting potential GxE interac-

tions include: limited power due to modest sample size, different

study designs and lack of available replication data. Integrating

GxE interaction analysis into GWAS design is a powerful strategy

for identifying more genetic factors influencing risk of complex

disease, which could be overlooked when such interaction is

ignored. A recent GWAS using the case-parent trio design found

markers in several genes (MLLT3, SMC2, TBK1, ZNF236, and

BAALC) showed statistically significant interaction with common

maternal exposures, although no single SNP achieved genome-

wide significance when such GxE interaction was ignored [22].

Beaty et al. (2011) combined CP trios from 12 different

recruitment sites in their analysis, which involved considerably

different rates of exposure to certain maternal exposures [22].

While the case-parent trio design has the advantage of being

robust to confounding due to population stratification (compared

to case-control designs), therefore allowing multi-site studies to

amass large sample sizes, this advantage may not hold when

considering GxE interaction especially if the exposure rates vary

across sites.

In this study, we performed stratified analysis of the CP case-

parent trios from the International Cleft Consortium [22] among

trios with different ancestries to test for GxE interactions with

common maternal exposures, including maternal cigarette smok-

ing, alcohol consumption, ETS and multivitamin supplementa-

tion. Here we classified the trios used by Beaty et al. (2011) into

groups of Asian and European ancestry and explored the potential

GxE interactions.

Subjects and Methods

Case-parent Trios
Research protocols were reviewed and approved by institutional

review boards (IRB) at each institution, including IRBs at The

Johns Hopkins School of Public Health, University of Iowa,

University of Pittsburgh, Utah State University, and all foreign

collaborators. The review process for the consortium was

approved by Johns Hopkins’ IRB. Written informed consent was

obtained from parents. Case-parent trios were drawn from an

international consortium which conducted a GWAS using a case-

parent trio design to search for genes controlling risk of

nonsyndomic, isolated oral clefts [10]. Most cases were ascertained

through surgical treatment centers at a surgical or post-surgical

visit. Racial/ethnic background of participants was originally

based on self-report and most of the 550 CP trios were of

European or Asian ancestry, but this was confirmed by

genotyping. Table 1 lists charateristics of the CP probands noting

gender and recruitment site, stratified by European or Asian

ancestry. To minimize potential misclassification of nonsyndromic

CP, all probands were examined for other congenital anomalies or

major developmental delays by either a clinical geneticist or

experienced health care provider to rule out syndromic forms of

oral clefts. As expected, there were slightly more female CP cases

(56.1%) compared to males. None of the parents of these CP cases

were themselves affected.

Table 1. Gender of isolated, nonsyndromic cleft palate (CP)
cases in the International Cleft Consortium by recruitment
site.

Asian ancestry

Site Males Females Total

Singapore 20 30 50

Taiwan 29 50 79

Shangdong Prov,China 16 22 38

Hubei Prov., China 19 26 45

Sichuan Prov., China 18 22 40

Other* 4 3 7

Subtotal 106 (40.9%) 153 (59.1%) 259

European ancestry

Site Males Females Total

Denmark 8 5 13

Norway 52 58 110

Iowa 18 22 40

Maryland 14 21 35

Pittsburg 6 8 14

Utah 29 27 56

Singapore 1 3 4

Subtotal 128(47.1%) 144(52.9%) 272

Other ancestries**

10(52.0%) 9(48.0%) 19

Total 244(43.9%) 306(56.1%) 550

*other sites include Maryland, Utah, and Korea.
**other ancestries include African American, Hispanic, Malay and others.
doi:10.1371/journal.pone.0088088.t001
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Genotyping
The Center for Inherited Disease Research (CIDR) genotyped

DNA samples using Illumina’s 610 Quad platform and 99.1%

passed CIDR quality control (QC) [10]. Genotypes on 589,945

SNPs (99.56% of those attempted) were released and then

underwent further QC analysis to set up 4 types of QC flags for

each SNP: 1) unacceptably high rates (.5%) of missing genotype

calls, 2) low minor allele frequency (MAF,0.01), 3) unacceptably

high rates of Mendelian errors (.5%) between parents and child,

and 4) significant deviation (p,1025) from Hardy Weinberg

equilibrium (HWE) among parents within recruitment site or

across European and Asian populations separately. This QC

process flagged 14.6% of all SNPs (mostly for low MAF), leaving

,498 K SNPs available for analysis.

Exposure Assessment
Maternal exposure information, including cigarette smoking,

ETS, multivitamin supplementation, and alcohol consumption

was collected through direct interview of mothers. Only Asian sites

collected complete information on ETS. Environmental exposures

were defined as being exposed from three months prior to

pregnancy through the first trimester. The question measuring

ETS status during certain periods asked ‘‘did someone smoke in

your home, workplace or any other place near you?’’. Maternal

exposures were assessed as simple yes/no responses. See Table II

in Beaty et al. (2011) for details of the exposure rates for all CP

trios. The proportion of infants exposed to maternal cigarette

smoking and alcohol consumption was very low among Asian

mothers (around 4%), so only maternal ETS and multivitamin

supplementation could be analyzed in this group. The proportion

of exposure to ETS and multivitamin supplementation among

Asians were 40.3% and 20.2%, respectively.

Statistical Analysis
MAFs were computed using parents only. Pairwise linkage

disequilibrium (LD) was measured as r2 for all SNPs using the

Haploview program, and was used to identify linkage disequilib-

rium (LD) blocks [23]. In this study, we used a closed form

genotypic transmission disequilibrium test (gTDT) developed by

Schwender et al. (2012) to test for genetic association of each SNP

[24]. To perform this gTDT, a ‘‘pseudo-control’’ dataset was

created based on the observed genotype of the case and all

alternative possible genotypes given the parental mating type. The

gTDT has a number of advantages compared to allelic TDT [25].

While assuming different models of inheritance, the gTDT can be

used to estimate the relative risks (RRs) of each genotype and a

term for GxE interaction can also be incorporated. Schwender

et al. (2012) developed a method with a closed form solution

providing parameter estimates for genome-wide markers efficiently

[24] and is implemented in the R package Trio (v 1.5.0).

All autosomal markers were examined using the conditional

logistic regression model assuming an additive model of inheri-

tance. The log-odds of being the observed case in the i-th trio is

modeled as: logit[P(casei)] = bG(Gi)+ bGxE(GixEi), where G = 0, 1,

or 2 stands for the number of risk alleles in the case:‘‘pseudo-

control’’ set (representing a 1:3 matching), andwhere E = 0 or 1

reflects unexposed or exposed mothers, respectively. A 2 degree of

freedom (df) likelihood ratio test (LRT) for joint effects of G and

GxE interaction was first performed, followed by a 1 df LRT for

GxE interaction alone. The 2 df test examines the inherited effect

of the SNP after taking into account effects of GxE interaction,

while the 1 df test focuses exclusively on GxE interaction. We used

RR(CP|G no E) = exp(bG) to represent the estimated RRs of being

a case with one copy of the risk allele in the absence of maternal

environment exposures, while RR(CP|G and E) = exp(bG+bGxE)

reflects the RR of being a case carrying one copy of the risk allele

in the presence of maternal exposure.

Results

A conventional search for marginal gene (G) effects in the total

sample of 550 CP trios, as well as in the stratified analysis of trios

of Asian and European ancestry, showed no markers achieved

significance at a genome-wide level (P#1027, data not shown).

A genome-wide screen for GxE interaction was carried out

using Trio (1.5.0), where conditional logistic regression models

were used to estimate effects of GxE interaction alone (LRT with

1 df ), as well as the combined effects of gene (G) and gene-

environment (GxE) interaction (LRT with 2 df). This screening

process yielded no significant signals among European trios (see

Figure S1 in File S1 for GxE interaction results on maternal

smoking, alcohol consumption and multivitamin supplementation

among European trios), but revealed several markers with

suggestive evidence of GxE interaction (1026,P,1024) among

259 Asian trios clustered on chromosome 4p16, especially in the

1 df test for GxETS interaction. Figure 1 presents a conventional

Manhattan plot for all autosomal SNPs where –log10(P) from the

1 df LRT for GxETS interaction was plotted (See Figure S2 in File

S1 for a Q-Q plot of GxETS interaction among Asian trios).

Therefore, we mainly present results for GxETS interaction

among Asian trios here.

To further investigate this evidence, Figure 2 presents a ‘‘double

Manhattan plot’’ to summarize joint evidence for G and GxETS

interaction effects on chromosome 4p (over the region

8988690 kb,10636912 kb). Table S1 in File S1 showed the

physical location and MAFs of SNPs in this region (19 SNPs with

MAF ,0.01 were dropped in this region). The bottom half of this

plot shows the log10(P) for the conventional family-based test of

SNP effects ignoring exposure (where more significant results fall

farther below the mid-line). In the top half of Figure 2, –log10(P)

are shown for each autosomal SNP from both the 2 df test of G

and GxE interaction together (red dots) and the 1 df test for GxE

interaction alone (blue dots). Dashed lines connect P-values from

the marginal test ignoring exposures (below the mid-line) to those

models considering GxE interaction (above the mid-line). As seen

in Figure 2, more than 20 markers gave P values approaching

genome-wide significance level in tests for GxETS interaction,

including 15 SNPs in SLC2A9 and 9 in WDR1 on chr. 4p16.1

(Figure S3 in File S1 shows LD plots for these two genes).

Although none of 135 SNPs mapping to SLC2A9 approached

genome-wide significance level when maternal exposure to ETS

was ignored (lower half of Figure 2), a cluster of 61 SNPs identified

a region spanning 125 kb yielded P values approaching genome-

wide significance levels when interaction with maternal ETS was

considered. In this region, fifteen SNPs showed suggestive

evidence of GxETS interaction in the 1 df test (Table 2). SNPs

rs3733585 and rs12508991 suggested GxETS interaction in the

1 df test (P = 2.2661027).

Regression coefficients from the conditional logistic regression

model provide an estimate of exposure specific RRs under this

additive model. When both G and GxE terms were included in the

conditional logistic regression model, RRs were also calculated for

both exposed and unexposed heterozygous carriers of the apparent

risk allele. Figure 3 shows estimated RR(CP|G no E) and

RR(CP|G and E) for 15 SNPs in SLC2A9 along with P values from

the LRT for both the 2 df and 1 df test. Here, the apparent ‘‘risk

allele’’ became the target allele (which was the minor allele for

rs10022499, rs10016075, rs2240723, rs3733585, rs733175, but
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the major allele for rs4447863, rs998676, rs6849717, rs11723970,

rs17187075, rs12499857, rs10939650, rs4622999, rs7657096,

rs12508991–see Table 2). Estimated RR(CP|G and E) and their

95%CI for a heterozygous child whose mother was exposed to

ETS were distinctly higher (open circles) compared to a similar

heterozygous child of unexposed mothers (solid circles). For the

two most significant SNPs (rs3733585 and rs12508991) being a

heterozygous child of an exposed mother was associated with a

2.58-fold increase in risk (RR = 2.58; 95% CI: 1.61–4.14), but not

among children of unexposed mothers (RR = 0.60; 95% CI:0.43–

0.83). The 1 df LRT for GxETS interaction in this conditional

logistic regression model approached genome-wide significance

(P = 2.2661027).

WDR1 on chr. 4p16.1 is located next to SLC2A9 and

encompasses 59 SNPs. Like SLC2A9, none of these SNPs achieved

genome-wide significance levels alone, however, a block of 9 SNPs

Figure 1. CP Asian ETS G6E Manhattan Plot. Manhattan plot with P values from likelihood ratio tests with 1 degree of freedom testing for
GxETS interaction among 259 Asian CP trios (492,698 SNPs were left in Asian trios after quality control).
doi:10.1371/journal.pone.0088088.g001

Figure 2. Gene 6Environmental Tobacco Smoke Interaction among Asian CP Group. Double Manhattan plots for SNP effects ignoring
maternal exposures (black dots in the lower half) and considering G and GxE interaction for environmental tobacco smoke on selected region on
chromosome 4p among 259 Asian trios. Blue dots represent -log10(P) from the 1 df test of GxE interaction alone; red dots represent -log10 (P) from
the 2 df test of G and GxE interaction. Dashed lines connect SNP showing this level of significance in one test considering GxE interaction with their
corresponding P-value when interaction was ignored.
doi:10.1371/journal.pone.0088088.g002
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(spanning 213 kb) showed suggestive GxETS interaction in the

1 df test for GxE interaction (Table 3). SNPs rs6820756 and

rs7699512 yielded P = 1.7961026 and P = 1.9861026 in the 1 df

test for GxE interaction, and two adjacent SNPs also approached

genome-wide significance (rs6834555, P = 2.2861026; rs6834555,

P = 2.7361026). Figure 4 shows estimated RR(CP|G no E) and

RR(CP|G and E), plus their 95%CI, for these 9 SNPs under an

additive model. The risk of having nonsyndromic CP was 1.97–

2.75 times higher when the fetus carried the risk allele and the

mother was exposed to ETS compared to carriers whose mothers

were not exposed.

Examining the imputed genotypes generated by the GENEVA

Coordinating Center [26] using 1000 Genomes reference popu-

lations after pre-phasing haplotypes using IMPUTE2 [27] yielded

additional evidence of GxETS interaction. Analysis of imputed

SNPs in the region of these two genes yielded genome-wide

significance for several markers (see Figure S4 in File S1).

Similar analysis for potential GxE interaction with maternal

multivitamin supplementation in these same Asian CP trios

showed no significant GxE interaction. Because the exposure rate

for maternal multivitamin supplementation was lower in this

sample of Asian CP trios (,20%), however, this sample had less

statistical power to detect GxE interaction unless the causal allele

Table 2. Estimated RR(case|G no E) and RR(case|G and E) from conditional logistic regression using cases and 3 pseudo-controls in
259 Asian CP case-parent trios for 15 SNPs in SLC2A9 considering GxE interaction between each SNP and maternal exposure to
environmental tobacco smoke.

SNP
Physical
location TA (freq) RR(case|G no E) RR(case|G and E) LRT 2 df P values LRT 1 df P values

rs4447863 9548067 C(0.593) 0.64(0.46,0.90) 2.07(1.32,3.25) 1.6161024 2.9461025

rs998676 9557662 G(0.587) 0.64(0.46,0.90) 2.07(1.32,3.25) 7.5161025 1.3661025

rs6849717 9567817 C(0.590) 0.66(0.47,0.91) 2.26(1.44,3.55) 5.0761025 9.0161026

rs11723970 9589560 T (0.588) 0.64(0.46,0.90) 2.21(1.42,3.46) 4.6761025 8.1461026

rs17187075 9599426 G(0.596) 0.64(0.46,0.89) 2.48(1.56,3.95) 8.2261026 1.3861026

rs12499857 9604474 G(0.600) 0.62(0.44,0.86) 2.46(1.53,3.95) 8.5761026 1.3661026

rs10939650 9607538 T(0.500) 0.71(0.50,1.01) 2.46(1.56,3.88) 3.9161025 1.2261025

rs4622999 9612493 C(0.600) 0.61(0.44,0.86) 2.46(1.53,3.95) 8.0861026 1.2861026

rs7657096 9613098 A(0.528) 0.70(0.49,0.99) 2.33(1.49,3.66) 7.7461025 2.0361025

rs10022499 9615635 C(0.492) 0.71(0.50,1.00) 2.37(1.51,3.72) 5.8761025 1.6061025

rs10016075 9615761 G(0.492) 0.71(0.50,1.00) 2.33(1.49,3.66) 8.2461025 2.1561025

rs2240723 9630249 A(0.465) 0.67(0.47,0.95) 2.32(1.49,3.62) 3.9361025 8.8161026

rs3733585 9645437 C(0.412) 0.60(0.43,0.83) 2.58(1.61,4.14) 1.5261026 2.2661027

rs12508991 9650202 C(0.588) 0.60(0.43,0.83) 2.58(1.61,4.14) 1.5261026 2.2661027

rs733175 9659239 C(0.488) 0.69(0.49,0.98) 2.71(1.70,4.33) 6.1261026 1.8961026

TA: target allele and its frequency among parents of Asian ancestry.
doi:10.1371/journal.pone.0088088.t002

Figure 3. SLC2A9: SNP 6Environmental Tobacco Smoke. Estimated RR(CP|G no E) and RR(CP|G and E) from conditional logistic regression
model considering SNP effects and their interaction with maternal exposure to ETS on 259 CP case-parent trios of Asian ancestry for fifteen SNPs in
SLC2A9. P-values from the 2 df and 1 df LRT for GxE interaction are shown along the X axis.
doi:10.1371/journal.pone.0088088.g003
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were highly polymorphic (MAF.0.15) and the true interaction

effects were at least as large as those seen in test of GxETS

interaction (RRGE.2.5).

Discussion

While the initial GWAS of 550 CP case-parent trios stratified by

European and Asian ancestry did not yield any markers achieving

genome-wide significance (i.e. when GxE interaction was ignored),

multiple markers in two adjacent genes on chr. 4p16.1 (SLC2A9

and WDR1) showed P-values approaching genome-wide signifi-

cance when GxETS interaction was incorporated into the analysis

of Asian trios. Our results suggested SLC2A9 and/or WDR1

located at position 9 Mb on chromosome 4p16.1 may influence

risk of nonsyndromic CP through interaction with maternal

exposure to ETS, though independent replication studies are still

needed to confirm these findings. Our study did not yield any

compelling evidence of GxE interactions approaching genome-

wide significance among trios of European ancestry.

Identifying GxEinteractionwill lead tobetterunderstanding of the

etiology of common birth defects and potential biological mecha-

nisms, as well as create opportunities for designing effective

prevention strategies. Several studies have shown maternal smoking

is not only an independent risk factor for CP [28,29], but may interact

with genetic variants to influence risk [12–14]. GxSmoking

interaction has been suggested for markers in the chr. 4p16 region.

A previous case-control study and case-parent trio studies showed

evidence of GxSmoking for markers near MSX1 on chr. 4p16 among

CP trios or combined CL/P and CP trios [30,31]. This 4p16 region

has been suggested to be associated with increased risk of

nonsyndromic oral clefts, including CL/P and CP in a previous

analysis [32]. Ingersoll et al. (2010) used 381 case-parent trios from

fourpopulations includingAsiansamples fromSingapore,Koreaand

Taiwan [32]. Their analysis focused on the 2 Mb region around

MSX1 and showed SNP effects in STK32B, the EVC–EVC2–CRMP1

region, and the STX18–MSX1 region were significantly associated

with risk to CP, especially among Asian trios. A Dutch study showed

smoking by both parents may interact with SNPs in MSX1 to increase

the risk of nonsyndromic oral clefts [16]. SLC2A9 and WDR1, the

most significantgenes seenhere,are locatedabout3 Mbdownstream

of MSX1. ETS has been shown to interact with candidate genes to

influence risk of nonsyndromic oral clefts in different populations.

Table 3. Estimated RR(case|G no E) and RR(case|G and E) from conditional logistic regression using cases and 3 pseudo-controls in
259 CP case-parent trios for 9 SNPs in WDR1 considering maternal exposure to environmental tobacco smoke.

SNP Physical location TA (freq) RR(case|G no E) RR(case|G and E) LRT 2 df p-value LRT 1 df p-value

rs6834555 9671424 G(0.482) 0.71(0.50,1.00) 2.75(1.72,4.39) 5.6161026 2.2861026

rs6820756 9671947 A(0.482) 0.70(0.50,0.99) 2.75(1.72,4.39) 4.9361026 1.7961026

rs2241469 9689560 A(0.652) 0.68(0.48,0.97) 2.36(1.48,3.77) 8.7361025 1.9761025

rs2241482 9708912 G(0.654) 0.69(0.49,0.98) 2.37(1.47,3.83) 1.0661024 2.3161025

rs717615 9713768 C(0.527) 0.63(0.45,0.88) 2.42(1.50,3.89) 1.6761025 2.7361026

rs4697922 9719703 C(0.657) 0.68(0.48,0.97) 2.43(1.50,3.96) 7.7061025 1.5861025

rs7699512 9734906 T(0.519) 0.56(0.40,0.79) 2.11(1.34,3.30) 9.9061026 1.9861026

rs10489072 9882342 G(0.499) 0.65(0.46,0.92) 1.97(1.27,3.05) 4.0861024 7.8161025

rs6833142 9885080 G(0.494) 0.66(0.47,0.93) 1.97(1.27,3.05) 4.6561024 8.9861025

TA: target allele and its frequency among parents of Asian ancestry.
doi:10.1371/journal.pone.0088088.t003

Figure 4. WDR1: SNP 6 Environmental Tobacco Smoke. Estimated RR(CP|G no E) and RR(CP|G and E) from conditional logistic regression
model considering SNP effects and their interaction with maternal exposure to ETS on 259 CP case-parent trios of Asian ancestry for nine SNPs in
WDR1. P-values from the 2 df and 1 df LRT for GxE interaction are shown along the X axis.
doi:10.1371/journal.pone.0088088.g004
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Previous studies have shown ETS may interact with IRF6, RUNX2,

and BMP4 among Chinese CL/P case-parent trios [17,19,33].

Another French study yielded suggestive evidence for interaction

between CYP1A1 and ETS among nonsyndromic oral cleft trios [15].

Li et al. (2011) also found maternal ETS interacted with one SNP in

microRNA-140 gene to increase the risk of nonsyndromic CP using

case-control design in a Chinese population [18].

The WDR1 gene (WD repeat domain 1, also called actin-

interacting protein 1) is downstream from SLC2A9 and it is highly

conserved in eukaryotes and promotes cofilin-mediated actin

filament disassembly [34]. Kato et al. (2008) noted WDR1 has an

important role in unidirectional cell migration by promoting cofilin

activity. Protein aggregates of actin and cofilin in the brains of twins

with dystonia and CL/P were described by Gearing, et al. (2010)

[35]. While neither of these studies is proof ofany link betweenWDR1

and nonsyndromic oral clefts, they suggest a possible biological

mechanism involving disruption of cell migration during develop-

ment of thepalate.TheSLC2A9gene (solutecarrier family2,member

9) is located on chromosome 4p16.1, and encodes a member of the

SLC2A facilitativeglucose transportergene family,which is critical for

maintaining glucose homeostasis. Multiple association studies across

several populations showed consistent findings that this gene is

associated with uric acid concentration and risk of gout [36–43], with

a higher effect size among females compared to males. In our study,

markers in these genes were in high LD. Therefore, the significant

findingsofGxETSinteraction inSLC2A9mayreflect its closephysical

proximity to WDR1. We also performed the GxETS analysis using

imputed genotype data in this chromosomal region among Asian

trios, and the imputed genotypes yielded greater significance

(including several achieving genome-wide significance) in the region

(FigureS4inFileS1). Inaddition,wetestedforparent-of-origineffects

among exposed and unexposed trios using the parent-of-origin

likelihood ratio test [44], but found no significant signals. Our study

suggested genes in this region may play a role in the etiology of CP not

only through gene effects but also may through potential GxE

interactions, at least among Asian populations. Although it is unclear

how either of these genes affects cleft development, our results suggest

these two genes (especially WDR1) should be considered as candidate

genes for nonsyndromic CP.

We acknowledge the suggestive GxETS interactions on chr.

4p16.1 region seen in the present study require further confirmation

in independent samples. However, adequate sample size will be a

challenge. Our results argue maternal ETS appears to increase risk of

nonsyndromic CP in Asian cases carrying certain genotypes in

SLC2A9 and WDR1. Exposure rate of ETS among Asian mothers in

this sample was as high as 40%, reflecting the high prevalence of

smoking among Asian males (about 60%) [45]. If this observation can

be confirmed, such a GxE interaction creates opportunities for an

effective intervention to reduce the risk. Our suggestive evidence of

interaction between ETS and two genes on Chromosome 4 would be

strengthened if we could test for GxSmoking interaction in this same

population. However, suchanalysis wouldbe severelyunderpowered

due to low rates of personal smoking among Asian women. Further

analyses will be required to understand how maternal exposure to

ETScouldinteractwithgenestoaffect fetaldevelopment. Inaddition,

the analysis testing for the interaction between maternal genes and

environmental exposures could also be informative. While the case-

parent trio design is robust to population stratification [46,47], and

stratification into Asian/European ancestries minimizes potential

confounding due to differences in exposure rates, this study illustrates

the importance of considering possible GxE interaction in the

etiology of CP. Still statistical interaction does not guarantee

biological interaction, and the functional gene may be located some

distance from the statistical signals for GxE interaction seen here.

Supporting Information

File S1 Supporting information. Figure S1.1: Manhattan

plot with P values from likelihood ratio tests with 1 degree of

freedom testing for GxSmoking interaction among 272 European

CP trios. Figure S1.2 Manhattan plot with P values from likelihood

ratio tests with 1 degree of freedom testing for GxAlcohol

consumption interaction among 272 European CP trios. Figure

S1.3 Manhattan plot with P values from likelihood ratio tests with

1 degree of freedom testing for GxMultivitamin supplementation

consumption interaction among 272 European CP trios. Figure

S2: Q-Q plot with P values from likelihood ratio tests with 1

degree of freedom testing for GxETS interaction among 259 Asian

CP trios (492,698 SNPs were left in Asian trios after quality

control). The gray shaded region indicates 95% confidence band

for order statistics. The numbers on the top axis indicate the

respective locations for (ordered) expected –log10 p-values. (e.g.,

the number 1 (10) indicates the expected value, on the –log10

scale, for the minimum (i.e. the tenth smallest) p-value). Figure

S3.1 LD plots for SLC2A9 among 259 Asian CP trios. Black

squares represent r2 = 1; gray squares represent 0,r2,1; white

squares represent r2 = 0. Figure S3.2 LD plots for WDR1 among

259 Asian CP trios. Black squares represent r2 = 1; gray squares

represent 0,r2,1; white squares represent r2 = 0. Figure S4: P

values from likelihood ratio test with 1 degree of freedom testing

for GxETS interaction after including the imputed SNPs among

Asian CP trios. Circles represent imputed genotypes using 1000

Genomes as a reference population and squares represent

observed SNPs. Table S1.
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41. Yang Q, Köttgen A, Dehghan A, Smith AV, Glazer NL, et al. (2010) Multiple

genetic loci influence serum urate levels and their relationship with gout and

cardiovascular disease risk factors. Circ Cardiovasc Genet 3: 523–530.

42. Charles BA, Shriner D, Doumatey A, Chen G, Zhou J, et al. (2011) A genome-

wide association study of serum uric acid in African Americans. BMC Med

Genomics 4: 17. Available: http://www.biomedcentral.com/1755-8794/4/17.

43. Li C, Chu N, Wang B, Wang J, Luan J, et al. (2012) Polymorphisms in the

presumptive promoter region of the SLC2A9 gene are associated with gout in a

Chinese male population. PLoS One 7: e24561. doi:10.1371/journal.-

pone.0024561.

44. Weinberg CR. (1999) Methods for detection of parent-of-origin effects in genetic

studies of case–parents triads. Am J Hum Genet 65: 229–235.

45. Gu D, Wu X, Reynolds K, Duan X, Xin X, et al. (2004) Cigarette smoking and

exposure to environmental tobacco smoke in China: the international

collaborative study of cardiovascular disease in Asia. Am J Public Health 94:

1972–1976.

46. Cordell HJ, Barratt BJ, Clayton DG (2004) Case/pseudocontrol analysis in

genetic association studies: A unified framework for detection of genotype and

haplotype associations, gene-gene and gene-environment interactions, and

parent-of-origin effects. Genetic Epidemiology 26: 167–185.

47. Starr JR, Hsu L, Schwartz SM (2005) Assessing maternal genetic associations: a

comparison of the log-linear approach to case-parent triad data and a case-

control approach. Epidemiology 16: 294–303.

Gene2Environment Interaction on Oral Clefts

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88088


