54 research outputs found

    Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field

    Get PDF
    We have investigated the magnetoconductance of semiconducting carbon nanotubes (CNTs) in pulsed, parallel magnetic fields up to 60 T, and report the direct observation of the predicted band-gap closure and the reopening of the gap under variation of the applied magnetic field. We also highlight the important influence of mechanical strain on the magnetoconductance of the CNTs.Comment: 4 pages, 4 figure

    Blocking transport resonances via Kondo entanglement in quantum dots

    Get PDF
    Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we quantitatively show an undiscovered side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic cotunneling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global \SUT\ \otimes \SUT\ symmetry of a carbon nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.Comment: 9 pages, 4 figure

    Persistent currents in carbon nanotubes

    Full text link
    Persistent currents driven by a static magnetic flux parallel to the carbon nanotube axis are investigated. Owing to the hexagonal symmetry of graphene the Fermi contour expected for a 2D-lattice reduces to two points. However the electron or hole doping shifts the Fermi energy upwards or downwards and as a result, the shape of the Fermi surface changes. Such a hole doping leading to the Fermi level shift of (more or less) 1eV has been recently observed experimentally. In this paper we show that the shift of the Fermi energy changes dramatically the persistent currents and discuss the electronic structure and possible currents for zigzag as well as armchair nanotubes.Comment: 8 text pages, 6 figures, to appear in Physics Letters

    Topology and zero energy edge states in carbon nanotubes with superconducting pairing

    Get PDF
    We investigate the spectrum of finite-length carbon nanotubes in the presence of onsite and nearest-neighbor superconducting pairing terms. A one-dimensional ladder-type lattice model is developed to explore the low-energy spectrum and the nature of the electronic states. We find that zero energy edge states can emerge in zigzag class carbon nanotubes as a combined effect of curvature-induced Dirac point shift and strong superconducting coupling between nearest-neighbor sites. The chiral symmetry of the system is exploited to define a winding number topological invariant. The associated topological phase diagram shows regions with nontrivial winding number in the plane of chemical potential and superconducting nearest-neighbor pair potential (relative to the onsite pair potential). A one-dimensional continuum model reveals the topological origin of the zero energy edge states: a bulk-edge correspondence is proven, which shows that the condition for nontrivial winding number and that for the emergence of edge states are identical. For armchair class nanotubes, the presence of edge states in the superconducting gap depends on the nanotube's boundary shape. For the minimal boundary condition, the emergence of the subgap states can also be deduced from the winding number

    Broken SU(4) symmetry in a Kondo-correlated carbon nanotube

    Full text link
    Understanding the interplay between many-body phenomena and non-equilibrium in systems with entangled spin and orbital degrees of freedom is a central objective in nano-electronics. We demonstrate that the combination of Coulomb interaction, spin-orbit coupling and valley mixing results in a particular selection of the inelastic virtual processes contributing to the Kondo resonance in carbon nanotubes at low temperatures. This effect is dictated by conjugation properties of the underlying carbon nanotube spectrum at zero and finite magnetic field. Our measurements on a clean carbon nanotube are complemented by calculations based on a new approach to the non-equilibrium Kondo problem which well reproduces the rich experimental observations in Kondo transport.Comment: 8 pages, 6 figures; appendix of 14 pages, 7 figure

    Induced fermionic current in toroidally compactified spacetimes with applications to cylindrical and toroidal nanotubes

    Full text link
    The vacuum expectation value of the fermionic current is evaluated for a massive spinor field in spacetimes with an arbitrary number of toroidally compactified spatial dimensions in presence of a constant gauge field. By using the Abel-Plana type summation formula and the zeta function technique we present the fermionic current in two different forms. Non-trivial topology of the background spacetime leads to the Aharonov-Bohm effect on the fermionic current induced by the gauge field. The current is a periodic function of the magnetic flux with the period equal to the flux quantum. In the absence of the gauge field it vanishes for special cases of untwisted and twisted fields. Applications of the general formulae to Kaluz-Klein type models and to cylindrical and toroidal carbon nanotubes are given. In the absence of magnetic flux the total fermionic current in carbon nanotubes vanishes, due to the cancellation of contributions from two different sublattices of the graphene hexagonal lattice.Comment: 18 pages, 5 figures, explicit regularization procedure adde

    European evidence-based recommendations for clinical assessment of upper limb in neurorehabilitation (CAULIN): data synthesis from systematic reviews, clinical practice guidelines and expert consensus

    Get PDF
    Background: Technology-supported rehabilitation can help alleviate the increasing need for cost-effective rehabilitation of neurological conditions, but use in clinical practice remains limited. Agreement on a core set of reliable, valid and accessible outcome measures to assess rehabilitation outcomes is needed to generate strong evidence about effectiveness of rehabilitation approaches, including technologies. This paper collates and synthesizes a core set from multiple sources; combining existing evidence, clinical practice guidelines and expert consensus into European recommendations for Clinical Assessment of Upper Limb In Neurorehabilitation (CAULIN). Methods: Data from systematic reviews, clinical practice guidelines and expert consensus (Delphi methodology) were systematically extracted and synthesized using strength of evidence rating criteria, in addition to recommendations on assessment procedures. Three sets were defined: a core set: strong evidence for validity, reliability, responsiveness and clinical utility AND recommended by at least two sources; an extended set: strong evidence OR recommended by at least two sources and a supplementary set: some evidence OR recommended by at least one of the sources. Results: In total, 12 measures (with primary focus on stroke) were included, encompassing body function and activity level of the International Classification of Functioning and Health. The core set recommended for clinical practice and research: Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT); the extended set recommended for clinical practice and/or clinical research: kinematic measures, Box and Block Test (BBT), Chedoke Arm Hand Activity Inventory (CAHAI), Wolf Motor Function Test (WMFT), Nine Hole Peg Test (NHPT) and ABILHAND; the supplementary set recommended for research or specific occasions: Motricity Index (MI); Chedoke-McMaster Stroke Assessment (CMSA), Stroke Rehabilitation Assessment Movement (STREAM), Frenchay Arm Test (FAT), Motor Assessment Scale (MAS) and body-worn movement sensors. Assessments should be conducted at pre-defined regular intervals by trained personnel. Global measures should be applied within 24 h of hospital admission and upper limb specific measures within 1 week. Conclusions: The CAULIN recommendations for outcome measures and assessment procedures provide a clear, simple, evidence-based three-level structure for upper limb assessment in neurological rehabilitation. Widespread adoption and sustained use will improve quality of clinical practice and facilitate meta-analysis, critical for the advancement of technology-supported neurorehabilitation.The European Network on Robotics for NeuroRehabilitation (Working Group 1) developed these recommendations. Their work was funded by the European Co-Operation in Science and Technology (COST Action TD1006) programme. The funding body had no role in or infuence on the selected approach and synthesis, analysis, and interpretation of data and in writing the manuscript

    A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke

    Get PDF
    BACKGROUND:Neurorehabilitation technologies such as robot therapy (RT) and transcranial Direct Current Stimulation (tDCS) can promote upper limb (UL) motor recovery after stroke. OBJECTIVE:To explore the effect of anodal tDCS with uni-lateral and three-dimensional RT for the impaired UL in people with sub-acute and chronic stroke. METHODS:A pilot randomised controlled trial was conducted. Stroke participants had 18 one-hour sessions of RT (Armeo®Spring) over eight weeks during which they received 20 minutes of either real tDCS or sham tDCS during each session. The primary outcome measure was the Fugl-Meyer assessment (FMA) for UL impairments and secondary were: UL function, activities and stroke impact collected at baseline, post-intervention and three-month follow-up. RESULTS:22 participants (12 sub-acute and 10 chronic) completed the trial. No significant difference was found in FMA between the real and sham tDCS groups at post-intervention and follow-up (p = 0.123). A significant ‘time’ x ‘stage of stroke’ was found for FMA (p = 0.016). A higher percentage improvement was noted in UL function, activities and stroke impact in people with sub-acute compared to chronic stroke. CONCLUSIONS:Adding tDCS did not result in an additional effect on UL impairment in stroke. RT may be of more benefit in the sub-acute than chronic phase

    Evaluation of upper extremity neurorehabilitation using technology: A European Delphi consensus study within the EU COST Action Network on Robotics for Neurorehabilitation

    Get PDF
    Background: The need for cost-effective neurorehabilitation is driving investment into technologies for patient assessment and treatment. Translation of these technologies into clinical practice is limited by a paucity of evidence for cost-effectiveness. Methodological issues, including lack of agreement on assessment methods, limit the value of meta-analyses of trials. In this paper we report the consensus reached on assessment protocols and outcome measures for evaluation of the upper extremity in neurorehabilitation using technology. The outcomes of this research will be part of the development of European guidelines. Methods: A rigorous, systematic and comprehensive modified Delphi study incorporated questions and statements generation, design and piloting of consensus questionnaire and five consensus experts groups consisting of clinicians, clinical researchers, non-clinical researchers, and engineers, all with working experience of neurological assessments or technologies. For data analysis, two major groups were created: i) clinicians (e.g., practicing therapists and medical doctors) and ii) researchers (clinical and non-clinical researchers (e.g. movement scientists, technology developers and engineers). Results: Fifteen questions or statements were identified during an initial ideas generation round, following which the questionnaire was designed and piloted. Subsequently, questions and statements went through five consensus rounds over 20 months in four European countries. Two hundred eight participants: 60 clinicians (29 %), 35 clinical researchers (17 %), 77 non-clinical researchers (37 %) and 35 engineers (17 %) contributed. At each round questions and statements were added and others removed. Consensus (≥69 %) was obtained for 22 statements on i) the perceived importance of recommendations; ii) the purpose of measurement; iii) use of a minimum set of measures; iv) minimum number, timing and duration of assessments; v) use of technology-generated assessments and the restriction of clinical assessments to validated outcome measures except in certain circumstances for research. Conclusions: Consensus was reached by a large international multidisciplinary expert panel on measures and protocols for assessment of the upper limb in research and clinical practice. Our results will inform the development of best practice for upper extremity assessment using technologies, and the formulation of evidence-based guidelines for the evaluation of upper extremity neurorehabilitation
    corecore