11 research outputs found

    The COVID-19 Pandemic and Global Food Security

    Get PDF
    We present scientific perspectives on the impact of the COVID-19 pandemic and global food security. International organizations and current evidence based on other respiratory viruses suggests COVID-19 is not a food safety issue, i.e., there is no evidence associating food or food packaging with the transmission of the virus causing COVID-19 (SARS-CoV-2), yet an abundance of precaution for this exposure route seems appropriate. The pandemic, however, has had a dramatic impact on the food system, with direct and indirect consequences on lives and livelihoods of people, plants, and animals. Given the complexity of the system at risk, it is likely that some of these consequences are still to emerge over time. To date, the direct and indirect consequences of the pandemic have been substantial including restrictions on agricultural workers, planting, current and future harvests; shifts in agricultural livelihoods and food availability; food safety; plant and animal health and animal welfare; human nutrition and health; along with changes in public policies. All aspects are crucial to food security that would require “One Health” approaches as the concept may be able to manage risks in a cost-effective way with cross-sectoral, coordinated investments in human, environmental, and animal health. Like climate change, the effects of the COVID-19 pandemic will be most acutely felt by the poorest and most vulnerable countries and communities. Ultimately, to prepare for future outbreaks or threats to food systems, we must take into account the Sustainable Development Goals of the United Nations and a “Planetary Health” perspective

    Qualitative Risk Assessment for Antimicrobial Resistance among Humans from Salmon Fillet Consumption Due to the High Use of Antibiotics against Bacterial Infections in Farmed Salmon

    No full text
    Background: Worldwide, aquaculture is considered as a hotspot environment for antimicrobial resistance (AMR) due to the intense use of antibiotics in its productive systems. Chile is the second largest producer of farmed salmon worldwide, and tons of antibiotics are used to control bacterial diseases, such as Salmon Rickettsial Syndrome (SRS) and Bacterial Kidney Disease (BKD). However, studies determining the risk of consuming salmon fillets that have been treated with antibiotics during the salmon production are limited. Consulting leading experts in the field could provide a knowledge base to identify and address this question and research gaps. Methods: Multisectoral risk perception of AMR through salmon fillet consumption was evaluated by eliciting expert data obtained through discussions during a workshop and from questionnaires given to experts from academia (n = 15, 63%), the public sector (n = 5, 21%), and the salmon industry (n = 4, 17%). Results: The qualitative risk analysis suggested an overall ‘low’ probability of AMR acquisition by consumption of salmon fillet that had been treated during the production cycle. The risk perception varied slightly between production stages in freshwater and seawater. In consensus with all sectors, this overall ‘low’, but existing, risk was probably associated with bacterial infections and the use of antibiotics. Conclusions: As it is essential to reduce the use of antibiotics in the Chilean salmon industry, this intersectoral approach and consensual results could favor effective implementation of targeted initiatives for the control and prevention of major bacterial diseases

    Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes.

    Get PDF
    The high use of antibiotics for the treatment of bacterial diseases is one of the main problems in the mass production of animal protein. Salmon farming in Chile is a clear example of the above statement, where more than 5,500 tonnes of antibiotics have been used over the last 10 years. This has caused a great impact both at the production level and on the environment; however, there are still few works in relation to it. In order to demonstrate the impact of the high use of antibiotics on fish gut microbiota, we have selected four salmon farms presenting a similar amount of fish of the Atlantic salmon species (Salmo salar), ranging from 4,500 to 6,000 tonnes. All of these farms used treatments with high doses of antibiotics. Thus, 15 healthy fish were selected and euthanised in order to isolate the bacteria resistant to the antibiotics oxytetracycline and florfenicol from the gut microbiota. In total, 47 bacterial isolates resistant to florfenicol and 44 resistant to oxytetracycline were isolated, among which isolates with Minimum Inhibitory Concentrations (MIC) exceeding 2048 μg/mL for florfenicol and 1024 μg/mL for oxytetracycline were found. In addition, another six different antibiotics were tested in order to demonstrate the multiresistance phenomenon. In this regard, six isolates of 91 showed elevated resistance values for the eight tested antibiotics, including florfenicol and oxytetracycline, were found. These bacteria were called "super-resistant" bacteria. This phenotypic resistance was verified at a genotypic level since most isolates showed antibiotic resistance genes (ARGs) to florfenicol and oxytetracycline. Specifically, 77% of antibiotic resistant bacteria showed at least one gene resistant to florfenicol and 89% showed at least one gene resistant to oxytetracycline. In the present study, it was demonstrated that the high use of the antibiotics florfenicol and oxytetracycline has, as a consequence, the selection of multiresistant bacteria in the gut microbiota of farmed fish of the Salmo salar species at the seawater stage. Also, the phenotypic resistance of these bacteria can be correlated with the presence of antibiotic resistance genes

    Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the south-eastern Pacific

    No full text
    © 2018 John Wiley & Sons Ltd Aim: The distribution and genetic composition of marine populations is the result of climatic and oceanographic factors as well as life history strategies. Studying species with wide distributions and high dispersal potential in sites that were differentially affected during the Pleistocene glaciations provides an opportunity to evaluate the genetic and distributional effect of glaciations on marine populations, such as the limpet Siphonaria lesonii. The aim of the present study is to evaluate the differential effects of glaciations on areas covered and not covered by ice sheets during the Pleistocene glaciations. Location: Intertidal zone of the south-eastern Pacific covering approximately 5,000 km of coastline of Peru and Chile. Methods: We performed molecular analyses of mitochondrial and nuclear data jointly, as well as environmental niche modelling (ENM) of populations of the limpet Siphonaria lessonii. Using ENM, we modelled the potential distributio
    corecore