32 research outputs found

    Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Get PDF
    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from 35 N to 70 N. Deciduous forests were characterized by the highest winter Reco rates (0.90±0.39 gCm−2 d−1), when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02±0.02 gCm−2 d−1). Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g Cm−2 d−1) of 0.70(±0.33), 0.60(±0.38), 0.62(±0.43), 0.49(±0.22) and 0.27(±0.08), respectively. Our cross site analysis showed that winter air (Tair) and soil (Tsoil) temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands). Besides temperature, the seasonal amplitude of the leaf area index (LAI), inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (QS) was higher than the one over time (interannual, QT ). This can be expected because QS not only accounts for climate gradients across sites but also for (positively correlated) the spatial variability of substrate quantity. Thus, if the models estimate future warming impacts on Reco based on QS rather than QT , this could overestimate the impact of temperature changes

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

    Full text link
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Full text link
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions

    Pan-European ÎŽ <sup>13</sup>C values of air and organic matter from forest ecosystems

    No full text
    We present carbon stable isotope, ÎŽ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that ÎŽ13C values derived from large-scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem-scale ÎŽ13C values. In this framework, we also tested the potential of ÎŽ13C in canopy air and plant organic matter to record regional-scale ecophysiological patterns. Our network estimates for the mean ÎŽ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, ÎŽer and Δer, respectively, were −25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and −26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with ÎŽ13C values derived from regional-scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional-scale atmospheric sampling programs generally capture ecosystem ÎŽ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in ÎŽer. From west to east, across the network, there was a general enrichment in 13C (∌3‰ and ∌1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about −26.0‰ to −24.5‰ to −30.0‰), was also observed. In 2001, July and August ÎŽer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), ÎŽer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on ÎŽer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time-lag analyses of ÎŽer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of ÎŽer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the ÎŽer signal during this season. Organic matter ÎŽ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. ÎŽ13C values of organic matter of any of the plant components did not well represent short-term ÎŽer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components

    Pan-European ÎŽ<sup>1</sup><sup>3</sup>C values of air and organic matter from forest ecosystems

    No full text
    We present carbon stable isotope, delta C-13, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that delta C-13 values derived from large-scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem-scale delta C-13 values. In this framework, we also tested the potential of delta C-13 in canopy air and plant organic matter to record regional-scale ecophysiological patterns. Our network estimates for the mean delta C-13 of ecosystem respired CO2 and the related 'discrimination' of ecosystem respiration, delta(er) and Delta(er), respectively, were -25.6 +/- 1.9 parts per thousand and 17.8 +/- 2.0 parts per thousand in 2001 and -26.6 +/- 1.5 parts per thousand and 19.0 +/- 1.6 parts per thousand in 2002. The results were in close agreement with delta C-13 values derived from regional-scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional-scale atmospheric sampling programs generally capture ecosystem delta C-13 signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in delta(er). From west to east, across the network, there was a general enrichment in C-13 (similar to 3 parts per thousand and similar to 1 parts per thousand for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal C-13 enrichment between July and September, followed by depletion in November (from about -26.0 parts per thousand to -24.5 parts per thousand to -30.0 parts per thousand), was also observed. In 2001, July and August delta(er) values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (T-a), but not significantly with monthly average precipitation (P-m). In contrast, in 2002 (a much wetter peak season), delta(er) was significantly related with T-a, but not significantly with VPD and RH. The important role of plant physiological processes on delta(er) in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time-lag analyses of delta(er) vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of delta(er) and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the delta(er) signal during this season. Organic matter delta C-13 results showed progressive C-13 enrichment from leaves, through stems and roots to soil organic matter, which may be explained by C-13 fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. delta C-13 values of organic matter of any of the plant components did not well represent short-term delta(er) values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components

    Controls on winter ecosystem respiration in temperate and boreal ecosystems

    No full text
    Abstract. Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from 35 N to 70 N. Deciduous forests were characterized by the highest winter Reco rates (0.90±0.39 gCm−2 d−1), when winter is defined as the period during which daily air temperature remains below 0 C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02±0.02 gCm−2 d−1). Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g Cm−2 d−1) of 0.7 (±0.33), 0.60(±0.38), 0.62(±0.43), 0.49(±0.22) and 0.27(±0.08), respectively. Our cross site analysis showed that winter air (Tair) and soil (Tsoil) temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands). Besides temperature, the seasonal amplitude of the leaf area index (LAI), inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (QS) was higher than the one over time (interannual, QT ). This can be expected because QS not only accounts for climate gradients across sites but also for (positively correlated) the spatial variability of substrate quantity. Thus, if the models estimate future warming impacts on Reco based onQS rather thanQT, this could overestimate the impact of temperature changes.JRC.H.7-Climate Risk Managemen

    Quality Analysis Applied On Eddy Covariance Measurements At Complex Forest Sites Using Footprint Modelling

    Get PDF
    Measuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid. In the framework of the CARBOEUROFLUX project, we combined quality tests described by Foken and Wichura (1996) with the analytical footprint model of Schmid (1997). The aim was to identify suitable wind sectors and meteorological conditions for flux measurements. These tools were used on data of 18 participating sites. Quality tests were applied on the fluxes of momentum, sensible and latent heat, and on the CO2-flux, respectively. The influence of the topography on the vertical wind component was also checked. At many sites the land use around the flux towers is not homogeneous or the fetch may not be large enough. So the relative contribution of the land use type intended to be measured was also investigated. Thus the developed tool allows comparative investigations of the measured turbulent fluxes at different sites if using the same technique and algorithms for the determination of the fluxes as well as analyses of potential problems caused by influences of the surrounding land use pattern
    corecore