399 research outputs found
A Guidance Tool for VGI Contributors
Many people are familiar with the VGI project OpenStreetMap (OSM), but there are many other projects that are not as well known to volunteers. What is needed is a tool that can help volunteers match their motivations, interests and background to appropriate types of VGI projects
Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets
At low energies, electrons in doped graphene sheets are described by a
massless Dirac fermion Hamiltonian. In this work we present a semi-analytical
expression for the dynamical density-density linear-response function of
noninteracting massless Dirac fermions (the so-called "Lindhard" function) at
finite temperature. This result is crucial to describe finite-temperature
screening of interacting massless Dirac fermions within the Random Phase
Approximation. In particular, we use it to make quantitative predictions for
the specific heat and the compressibility of doped graphene sheets. We find
that, at low temperatures, the specific heat has the usual normal-Fermi-liquid
linear-in-temperature behavior, with a slope that is solely controlled by the
renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.
Gamma-ray and radio tests of the e+e- excess from DM annihilations
PAMELA and ATIC recently reported an excess in e+e- cosmic rays. We show that
if it is due to Dark Matter annihilations, the associated gamma-ray flux and
the synchrotron emission produced by e+e- in the galactic magnetic field
violate HESS and radio observations of the galactic center and HESS
observations of dwarf Spheroidals, unless the DM density profile is
significantly less steep than the benchmark NFW and Einasto profiles.Comment: 16 pages, 4 figures; v2: normalizations fixed in Table 2 and typos
corrected (no changes in the analysis nor the results), some references and
comments added; v3: minor additions, matches published versio
VGI Quality
The poster summarizes the research works on Volunteered Geographic Information (VGI) quality undertaken within the EU COST Actions TD1202 "Mapping and the Citizen Sensor" and IC1203 "European Network Exploring Research into Geospatial Information Crowdsourcing: software and methodologies for harnessing geographic information from the crowd (ENERGIC)"
Mapping and the Citizen Sensor
The role of citizens in mapping has evolved considerably over the last decade. This chapter outlines the background to citizen sensing in mapping and sets the scene for the chapters that follow, which highlight some of the main outcomes of a collaborative programme of work to enhance the role of citizens in mapping
Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and
unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions.
As their defining property, these theories admit the action of a global or
local symmetry group that is (i) simple, and (ii) acts irreducibly on all the
vector fields of the theory, including the ``graviphoton''. Restricting
ourselves to the theories that originate from five dimensions via dimensional
reduction, we find that the generic Jordan family of MESGTs with the scalar
manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four
dimensions with the unifying global symmetry group SO(2,n). Of these theories
only one can be gauged so as to obtain a unified YMESGT with the gauge group
SO(2,1). Three of the four magical supergravity theories defined by simple
Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions.
Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with
gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family
and the theories whose scalar manifolds are homogeneous but not symmetric do
not lead to unified MESGTs in four dimensions. The three infinite families of
unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras,
whose scalar manifolds are non-homogeneous, do not lead directly to unified
MESGTs in four dimensions under dimensional reduction. However, since their
manifolds are non-homogeneous we are not able to completely rule out the
existence of symplectic sections in which these theories become unified in four
dimensions.Comment: 47 pages; latex fil
Investigating the feasibility of geo-tagged photographs as sources of land cover input data
Geo-tagged photographs are used increasingly as a source of Volunteered Geographic Information (VGI), which could potentially be used for land use and land cover applications. The purpose of this paper is to analyze the feasibility of using this source of spatial information for three use cases related to land cover: Calibration, validation and verification. We first provide an inventory of the metadata that are collected with geo-tagged photographs and then consider what elements would be essential, desirable, or unnecessary for the aforementioned use cases. Geo-tagged photographs were then extracted from Flickr, Panoramio and Geograph for an area of London, UK, and classified based on their usefulness for land cover mapping including an analysis of the accompanying metadata. Finally, we discuss protocols for geo-tagged photographs for use of VGI in relation to land cover applications
PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection
We provide ingredients and recipes for computing signals of TeV-scale Dark
Matter annihilations and decays in the Galaxy and beyond. For each DM channel,
we present the energy spectra of electrons and positrons, antiprotons,
antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at
production, computed by high-statistics simulations. We estimate the Monte
Carlo uncertainty by comparing the results yielded by the Pythia and Herwig
event generators. We then provide the propagation functions for charged
particles in the Galaxy, for several DM distribution profiles and sets of
propagation parameters. Propagation of electrons and positrons is performed
with an improved semi-analytic method that takes into account
position-dependent energy losses in the Milky Way. Using such propagation
functions, we compute the energy spectra of electrons and positrons,
antiprotons and antideuterons at the location of the Earth. We then present the
gamma ray fluxes, both from prompt emission and from Inverse Compton scattering
in the galactic halo. Finally, we provide the spectra of extragalactic gamma
rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125
higgs boson, computation and discussion of extragalactic spectra corrected,
some other typos fixed; all these corrections and updates are reflected on
the numerical ingredients available at
http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.
Astrophysical Bounds on Planck Suppressed Lorentz Violation
This article reviews many of the observational constraints on Lorentz
symmetry violation (LV). We first describe the GZK cutoff and other phenomena
that are sensitive to LV. After a brief historical sketch of research on LV, we
discuss the effective field theory description of LV and related questions of
principle, technical results, and observational constraints. We focus on
constraints from high energy astrophysics on mass dimension five operators that
contribute to LV electron and photon dispersion relations at order E/M_Planck.
We also briefly discuss constraints on renormalizable operators, and review the
current and future contraints on LV at order (E/M_Planck)^2.Comment: 30 pages, submitted to Lecture Notes in Physics, Quantum Gravity
Phenomenology, eds. G.Amelino-Camelia, J. Kowalski-Glikman (Springer-Verlag
Two Gallium data sets, spin flavour precession and KamLAND
We reexamine the possibility of a time modulation of the low energy solar
neutrino flux which is suggested by the average decrease of the Ga data in line
with our previous arguments. We perform two separate fits to the solar neutrino
data, one corresponding to 'high' and the other to 'low' Ga data, associated
with low and high solar activity respectively. We therefore consider an
alternative to the conventional solar+KamLAND fitting, which allows one to
explore the much wider range of the angle permitted by the
KamLAND fitting alone. We find a solution with parameters in which the 'high' and
the 'low' Ga rates lie far apart and are close to their central values and is
of comparable quality to the global best fit, where these rates lie much closer
to each other. This is an indication that the best fit in which all solar and
KamLAND data are used is not a good measure of the separation of the two Ga
data sets, as the information from the low energy neutrino modulation is
dissimulated in the wealth of data. Furthermore for the parameter set proposed
one obtains an equally good fit to the KamLAND energy spectrum and an even
better fit than the 'conventional' LMA one for the reactor antineutrino
survival probability as measured by KamLAND.Comment: V2: 15 pages, 3 eps figures, fit improved, final version to appear in
Journal of Physics
- …
