15 research outputs found
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and nonbreeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging speciespublishedVersio
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe
How shearwaters prey. New insights in foraging behaviour and marine foraging associations using bird-borne video cameras
Abstract
Conventional bio-logging techniques used for ethological studies of seabirds have their limitations when studying detailed behaviours at sea. This study uses animal-borne video cameras to reveal fine-scale behaviours, associations with conspecifics and other species and interactions with fishery vessels during foraging of a Mediterranean seabird. The study was conducted on Scopoli's shearwaters (Calonectris diomedea) breeding in Linosa island (35°51′33″ N; 12°51′34″ E) during summer 2020. Foraging events were video recorded from a seabirds' view with lightweight cameras attached to the birds' back. Foraging always occurred in association with other shearwaters. Competitive events between shearwaters were observed, and their frequency was positively correlated to the number of birds in the foraging aggregation. Associations with tunas and sea turtles have been frequent observations at natural foraging sites. During foraging events, video recordings allowed observations of fine-scale behaviours, which would have remained unnoticed with conventional tracking devices. Foraging events could be categorised by prey type into "natural prey" and "fishery discards". Analysis of the video footage suggests behavioural differences between the two prey type categories. Those differences suggest that the foraging effort between natural prey and fishery discards consumption can vary, which adds new arguments to the discussion about energy trade-offs and choice of foraging strategy. These observations highlight the importance of combining tracking technologies to obtain a complete picture of the at-sea behaviours of seabirds, which is essential for understanding the impact of foraging strategies and seabird-fishery interactions.
Graphical abstrac
Condition-dependent nocturnal hypothermia in Garden Warblers Sylvia borin at a spring stopover site
Migratory birds have evolved physiological and behavioural adaptations for crossing large ecological barriers through the accumulation of large amounts of fat and protein during the pre-migratory phase. Nevertheless, most migrant passerines usually need several stopovers en route to replenish their energy reserves and to rest. Migratory decisions at a stopover site strongly depend on body condition at arrival. Previous studies showed that lean birds prolong their stopover compared with fat birds that leave after a very short time. During the stopover, lean birds may reduce their metabolic costs by lowering body temperature (adaptive hypothermia hypothesis). However, it is not clear whether hypothermia can be an active economising strategy or just an unavoidable consequence of bad condition to avoid starvation. We used temperature loggers to measure skin temperature of 19 Garden Warblers Sylvia born caught at a spring stopover site (Ponza Island, Tyrrhenian Sea) and kept overnight in cotton bags. We found that both body condition and activity were positively correlated with skin temperature during the night. The data showed a gradual nocturnal temperature drop of more than 3 degrees C in lean birds, particularly in the central part of the night, followed by a recovery to normothermic levels. Overall, birds in worse physical condition lost more body mass during the night than birds in better condition, but this was especially true for birds that lowered their body temperature the least. These results indicate that hypothermia is associated with low body condition and that it may be functional by reducing body mass loss during migration
Using stable isotopes to assess population connectivity in the declining European Turtle Dove (Streptopelia turtur)
European Turtle Doves (Streptopelia turtur) are long-distance migrants and have experienced a population decline of more than 78% since 1980. Their conservation depends on refined knowledge of breeding origins and population connectivity. Feathers collected at stopover sites, but molted at breeding grounds, provide an opportunity to assign birds to potential regions of origin using tissue stable hydrogen isotope values and relate those to a European feather hydrogen isoscape. Here, 101 feather samples from 13 different breeding countries were analyzed to calibrate the European hydrogen isoscape and 101 feather samples from Spanish, Italian, Maltese, Greek, and Bulgarian stopovers were assigned to potential regions of origin. The assigned range of origin for all 101 individuals grouped together agreed with known distribution patterns. Bulgarian samples were mostly assigned to Russian areas. Possible origins of Greek, Italian, Maltese, and Spanish samples ranged from central to southern Europe. Individual assignments highlighted four broad regions of origin, corresponding to a cool/humid to hot/dry temperature gradient. Proportions of birds assigned to these regions varied among birds sampled at different stopover sites. Therefore, our results provide important information about population connectivity and may be useful to evaluate possible influences of hunting on Turtle Dove populations
Feather stable isotopes (δ2Hf and δ13Cf) identify the Sub-Saharan wintering grounds of turtle doves from Europe
Conservation of migratory birds requires knowledge of breeding and nonbreeding ranges and the connections between them. European turtle doves (Streptopelia turtur) are Palearctic-African long-distance migrants with wintering areas in the Sub-Saharan belt that are classed as vulnerable due to strong population declines. However, detailed non-breeding locations of individuals from different migratory flyways are unknown. To identify wintering regions of turtle doves, we measured stable isotopes of feathers grown on the wintering grounds and used a dual-isotope (hydrogen (δ²Hf) and carbon (δ¹³Cf)) probabilistic assignment to analyse origins of individuals migrating through the western and central/eastern flyways. The most probable wintering areas for turtle dove samples from both flyways were in the western and central Sub-Sahara. However, we found differences in δ²Hf and δ¹³Cf values between turtle doves following different migratory routes (western vs central/eastern flyway). This result suggests a higher likelihood of origins in the central Sub-Sahara for central and eastern migrants, while turtle doves using the western flyway originated primarily in the western Sub-Sahara, highlighting the importance of both regions for the future conservation of turtle doves from European breeding populations. The establishment of migratory connectivity of populations requires sampling from birds from the European as well as Asian continent; however, we provide important results that can be used to test hypotheses regarding population declines resulting from factors experienced over the full annual cycle for some populations