81 research outputs found

    The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach

    Get PDF
    Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded alpha-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface

    Identifying conformational changes with site-directed spin labeling reveals that the GTPase domain of HydF is a molecular switch

    Get PDF
    [FeFe]-hydrogenases catalyse the reduction of protons to hydrogen at a complex 2Fe[4Fe4S] center called H-cluster. The assembly of this active site is a multistep process involving three proteins, HydE, HydF and HydG. According to the current models, HydF has the key double role of scaffold, upon which the final H-cluster precursor is assembled, and carrier to transfer it to the target hydrogenase. The X-ray structure of HydF indicates that the protein is a homodimer with both monomers carrying two functional domains: a C-terminal FeS cluster-binding domain, where the precursor is assembled, and a N-terminal GTPase domain, whose exact contribution to cluster biogenesis and hydrogenase activation is still elusive. We previously obtained several hints suggesting that the binding of GTP to HydF could be involved in the interactions of this scaffold protein with the other maturases and with the hydrogenase itself. In this work, by means of site directed spin labeling coupled to EPR/PELDOR spectroscopy, we explored the conformational changes induced in a recombinant HydF protein by GTP binding, and provide the first clue that the HydF GTPase domain could be involved in the H-cluster assembly working as a molecular switch similarly to other known small GTPases

    correction an epr study of ampullosporin a a medium length peptaibiotic in bicelles and vesicles

    Get PDF
    Correction for 'An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles' by Marco Bortolus et al., Phys. Chem. Chem. Phys., 2016, 18, 749–760

    Depth Distribution of Spin-Labeled Liponitroxides within Lipid Bilayers: A Combined EPR and Molecular Dynamics Approach

    Get PDF
    The distribution in an egg\u2013phosphatidylcholine bilayer of a series of spin-labeled nitroxides, potentially useful as targeted antioxidants, has been investigated using molecular dynamics (MD) simulations. The in silico method has been tested at first for a series of n-doxyl-phosphocholine-doped bilayers, with the doxyl moiety located at different positions (n) of the lipid chain, in analogy to electron paramagnetic resonance (EPR) spin labeling and other MD studies. As a result, a novel calibration curve has been obtained, suitable to determine the absolute membrane penetration depth of any paramagnetic solute from EPR measurements. A second series of MD simulations was then carried out on the newly synthesized series of liponitroxides (NOXs) recently tested as antioxidants against the lipid peroxidation of polyunsaturated fatty acids in membranes: their penetration depths, as determined by EPR in phosphatidylcholine liposomes, were correlated with their antioxidant efficacy. In these NOXs, a glycerol moiety is esterified with a carboxy derivative of a pyrroline nitroxide and one or two oleic acid residues. A very good agreement between the EPR experimental results and those from the current MD simulations indicates that the short distance of the nitroxide moiety from the fatty acid double bonds has been now definitively assessed; moreover, it indicates that our MD methodology could be successfully employed in the absence of nonparamagnetic species

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF

    Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    Get PDF
    WOS:000323520600021International audienceIn time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order to extract the structural information of the solute, the solvent response has to be treated. Methodologies capable of doing so include both theoretical modelling and experimental determination of the solvent response. In the work presented here, we have investigated how to obtain a reproducible solvent response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We present results based on NIR and dye mediated solvent heating, and demonstrate that the solvent response is independent of the heating method. The NIR heating is shown to be rendered unusable by higher order effects under certain experimental conditions, while the dye mediated solvent heating is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore, we have generated a library of solvent terms, which can be used to describe the solvent term in any TRWAXS experiment, and made it available online

    Overview of the Maturation Machinery of the H-Cluster of [FeFe]-Hydrogenases with a Focus on HydF

    No full text
    Hydrogen production in nature is performed by hydrogenases. Among them, [FeFe]-hydrogenases have a peculiar active site, named H-cluster, that is made of two parts, synthesized in different pathways. The cubane sub-cluster requires the normal iron-sulfur cluster maturation machinery. The [2Fe] sub-cluster instead requires a dedicated set of maturase proteins, HydE, HydF, and HydG that work to assemble the cluster and deliver it to the apo-hydrogenase. In particular, the delivery is performed by HydF. In this review, we will perform an overview of the latest knowledge on the maturation machinery of the H-cluster, focusing in particular on HydF

    Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet–Triplet Energy Transfer

    Get PDF
    Carotenoids represent the first line of defence of photosystems against singlet oxygen (1O2) toxicity, because of their capacity to quench the chlorophyll triplet state (3Chl) through a physical mechanism based on the transfer of triplet excitation (triplet–triplet energy transfer, TTET). In previous works, we showed that the antenna LHCII is characterised by a robust photoprotective mechanism, able to adapt to the removal of individual chlorophylls while maintaining a remarkable capacity for 3Chl quenching. In this work, we investigated the effects on this quenching induced in LHCII by the replacement of the lutein bound at the L1 site with violaxanthin and zeaxanthin. We studied LHCII isolated from the Arabidopsis thaliana mutants lut2—in which lutein is replaced by violaxanthin—and lut2 npq2, in which all xanthophylls are replaced constitutively by zeaxanthin. We characterised the photophysics of these systems via optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR). We concluded that, in LHCII, lutein-binding sites have conserved characteristics, and ensure efficient TTET regardless of the identity of the carotenoid accommodated

    Conformational Cycle of the ABC Transporter MsbA in Liposomes: Detailed Analysis Using Double Electron-Electron Resonance Spectroscopy

    No full text
    Driven by the energy of ATP binding and hydrolysis, ATP-binding cassette transporters alternate between inward- and outward-facing conformations, allowing vectorial movement of substrates. Conflicting models have been proposed to describe the conformational motion underlying this switch in access of the transport pathway. One model, based on three crystal structures of the lipid flippase MsbA, envisions a large-amplitude motion that disengages the nucleotide-binding domains and repacks the transmembrane helices. To test this model and place the crystal structures in a mechanistic context, we use spin labeling and double electron-electron resonance spectroscopy to define the nature and amplitude of MsbA conformational change during ATP hydrolysis cycle. For this purpose, spin labels were introduced at sites selected to provide a distinctive pattern of distance changes unique to the crystallographic transformation. Distance changes in liposomes, induced by the transition from nucleotide-free MsbA to the highest energy intermediate, fit a simple pattern whereby residues on the cytoplasmic side undergo 20-30 \uc5 closing motion while a 7- to 10-\uc5 opening motion is observed on the extracellular side. The transmembrane helices undergo relative movement to create the outward opening consistent with that implied by the crystal structures. Double electron-electron resonance distance distributions reveal asymmetric backbone flexibility on the two sides of the transporter that correlates with asymmetric opening of the substrate-binding chamber. Together with extensive accessibility analysis, our results suggest that these structures capture features of the motion that couples ATP energy expenditure to work, providing a framework for the mechanism of substrate transport
    • …
    corecore