4,107 research outputs found

    Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services

    Get PDF
    This paper presents the development of ICAROUS-2 (Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services), the second generation of a software architecture that integrates several algorithms as distributed onboard services to enable robust autonomous UAS applications. In particular, the ICAROUS architecture defines a framework to perform detect and avoid, geofencing, path monitoring, path planning, and autonomous decision making to ensure safety and mission progress. Most of the core algorithms implemented in ICAROUS are formally verified using an interactive theorem prover. These algorithms are composed together using a plan execution engine, whose operational semantics is formally specified. A description of the integrated architecture, services currently available, and flight test results highlighting the capability of ICAROUS are presented

    Provably Correct Floating-Point Implementation of a Point-In-Polygon Algorithm

    Get PDF
    The problem of determining whether or not a point lies inside a given polygon occurs in many applications. In air traffic management concepts, a correct solution to the point-in-polygon problem is critical to geofencing systems for Unmanned Aerial Vehicles and in weather avoidance applications. Many mathematical methods can be used to solve the point-in-polygon problem. Unfortunately, a straightforward floating- point implementation of these methods can lead to incorrect results due to round-off errors. In particular, these errors may cause the control flow of the program to diverge with respect to the ideal real-number algorithm. This divergence potentially results in an incorrect point-in- polygon determination even when the point is far from the edges of the polygon. This paper presents a provably correct implementation of a point-in-polygon method that is based on the computation of the winding number. This implementation is mechanically generated from a source- to-source transformation of the ideal real-number specification of the algorithm. The correctness of this implementation is formally verified within the Frama-C analyzer, where the proof obligations are discharged using the Prototype Verification System (PVS)

    A Learning-Based Guidance Selection Mechanism for a Formally Verified Sense and Avoid Algorithm

    Get PDF
    This paper describes a learning-based strategy for selecting conflict avoidance maneuvers for autonomous unmanned aircraft systems. The selected maneuvers are provided by a formally verified algorithm and they are guaranteed to solve any impending conflict under general assumptions about aircraft dynamics. The decision-making logic that selects the appropriate maneuvers is encoded in a stochastic policy encapsulated as a neural network. The networks parameters are optimized to maximize a reward function. The reward function penalizes loss of separation with other aircraft while rewarding resolutions that result in minimum excursions from the nominal flight plan. This paper provides a description of the technique and presents preliminary simulation results

    An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs

    Get PDF
    This paper presents an abstract interpretation framework for the round-off error analysis of floating-point programs. This framework defines a parametric abstract analysis that computes, for each combination of ideal and floating-point execution path of the program, a sound over-approximation of the accumulated floating-point round-off error that may occur. In addition, a Boolean expression that characterizes the input values leading to the computed error approximation is also computed. An abstraction on the control flow of the program is proposed to mitigate the explosion of the number of elements generated by the analysis. Additionally, a widening operator is defined to ensure the convergence of recursive functions and loops. An instantiation of this framework is implemented in the prototype tool PRECiSA that generates formal proof certificates stating the correctness of the computed round-off errors

    A Mixed Real and Floating-Point Solver

    Get PDF
    Reasoning about mixed real and floating-point constraints is essential for developing accurate analysis tools for floating-point pro- grams. This paper presents FPRoCK, a prototype tool for solving mixed real and floating-point formulas. FPRoCK transforms a mixed formula into an equisatisfiable one over the reals. This formula is then solved using an off-the-shelf SMT solver. FPRoCK is also integrated with the PRECiSA static analyzer, which computes a sound estimation of the round-off error of a floating-point program. It is used to detect infeasible computational paths, thereby improving the accuracy of PRECiSA

    Fifteen years of XMM-Newton and Chandra monitoring of Sgr A*: Evidence for a recent increase in the bright flaring rate

    Get PDF
    We present a study of the X-ray flaring activity of Sgr A* during all the 150 XMM-Newton and Chandra observations pointed at the Milky Way center over the last 15 years. This includes the latest XMM-Newton and Chandra campaigns devoted to monitoring the closest approach of the very red Br-Gamma emitting object called G2. The entire dataset analysed extends from September 1999 through November 2014. We employed a Bayesian block analysis to investigate any possible variations in the characteristics (frequency, energetics, peak intensity, duration) of the flaring events that Sgr A* has exhibited since their discovery in 2001. We observe that the total bright-or-very bright flare luminosity of Sgr A* increased between 2013-2014 by a factor of 2-3 (~3.5 sigma significance). We also observe an increase (~99.9% significance) from 0.27+-0.04 to 2.5+-1.0 day^-1 of the bright-or-very bright flaring rate of Sgr A*, starting in late summer 2014, which happens to be about six months after G2's peri-center passage. This might indicate that clustering is a general property of bright flares and that it is associated with a stationary noise process producing flares not uniformly distributed in time (similar to what is observed in other quiescent black holes). If so, the variation in flaring properties would be revealed only now because of the increased monitoring frequency. Alternatively, this may be the first sign of an excess accretion activity induced by the close passage of G2. More observations are necessary to distinguish between these two hypotheses.Comment: Accepted for publication in MNRA

    JANUS: an FPGA-based System for High Performance Scientific Computing

    Get PDF
    This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ~ 1000. We also discuss the role of JANUS on other classes of scientific applications.Comment: 11 pages, 6 figures. Improved version, largely rewritten, submitted to Computing in Science & Engineerin

    Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Get PDF
    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PAS

    A mixed stirring mechanism for debris discs with giant and dwarf planetary perturbations

    Get PDF
    Debris discs consist of belts of bodies ranging in size from dust grains to planetesimals; these belts are visible markers of planetary systems around other stars that can reveal the influence of extrasolar planets through their shape and structure. Two key stirring mechanisms – self-stirring by planetesimals and secular perturbation by an external giant planet – have been identified to explain the dynamics of planetesimal belts; their relative importance has been studied independently, but are yet to be considered in combination. In this work, we perform a suite of 286 N-body simulations exploring the evolution of debris discs over 1 Gyr, combining the gravitational perturbations of both dwarf planets embedded in the discs, and an interior giant planet. Our systems were somewhat modelled after the architecture of the outer Solar system: a Solar mass star, a single massive giant planet at 30 au (MGP = 10 to 316 M?), and a debris disc formed by 100 massive dwarf planets and 1000 massless particles (MDD = 3.16 to 31.6 M?). We present the evolution of both the disc and the giant planet after 1 Gyr. The time evolution of the average eccentricity and inclination of the disc is strongly dependent on the giant planet mass as well as on the remaining disc mass. We also found that efficient stirring is achieved even with small disc masses. In general, we find that a mixed mechanism is more efficient in the stirring of cold debris discs than either mechanism acting in isolation

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore