4,107 research outputs found
Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services
This paper presents the development of ICAROUS-2 (Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services), the second generation of a software architecture that integrates several algorithms as distributed onboard services to enable robust autonomous UAS applications. In particular, the ICAROUS architecture defines a framework to perform detect and avoid, geofencing, path monitoring, path planning, and autonomous decision making to ensure safety and mission progress. Most of the core algorithms implemented in ICAROUS are formally verified using an interactive theorem prover. These algorithms are composed together using a plan execution engine, whose operational semantics is formally specified. A description of the integrated architecture, services currently available, and flight test results highlighting the capability of ICAROUS are presented
Provably Correct Floating-Point Implementation of a Point-In-Polygon Algorithm
The problem of determining whether or not a point lies inside a given polygon occurs in many applications. In air traffic management concepts, a correct solution to the point-in-polygon problem is critical to geofencing systems for Unmanned Aerial Vehicles and in weather avoidance applications. Many mathematical methods can be used to solve the point-in-polygon problem. Unfortunately, a straightforward floating- point implementation of these methods can lead to incorrect results due to round-off errors. In particular, these errors may cause the control flow of the program to diverge with respect to the ideal real-number algorithm. This divergence potentially results in an incorrect point-in- polygon determination even when the point is far from the edges of the polygon. This paper presents a provably correct implementation of a point-in-polygon method that is based on the computation of the winding number. This implementation is mechanically generated from a source- to-source transformation of the ideal real-number specification of the algorithm. The correctness of this implementation is formally verified within the Frama-C analyzer, where the proof obligations are discharged using the Prototype Verification System (PVS)
A Learning-Based Guidance Selection Mechanism for a Formally Verified Sense and Avoid Algorithm
This paper describes a learning-based strategy for selecting conflict avoidance maneuvers for autonomous unmanned aircraft systems. The selected maneuvers are provided by a formally verified algorithm and they are guaranteed to solve any impending conflict under general assumptions about aircraft dynamics. The decision-making logic that selects the appropriate maneuvers is encoded in a stochastic policy encapsulated as a neural network. The networks parameters are optimized to maximize a reward function. The reward function penalizes loss of separation with other aircraft while rewarding resolutions that result in minimum excursions from the nominal flight plan. This paper provides a description of the technique and presents preliminary simulation results
An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs
This paper presents an abstract interpretation framework for the round-off error analysis of floating-point programs. This framework defines a parametric abstract analysis that computes, for each combination of ideal and floating-point execution path of the program, a sound over-approximation of the accumulated floating-point round-off error that may occur. In addition, a Boolean expression that characterizes the input values leading to the computed error approximation is also computed. An abstraction on the control flow of the program is proposed to mitigate the explosion of the number of elements generated by the analysis. Additionally, a widening operator is defined to ensure the convergence of recursive functions and loops. An instantiation of this framework is implemented in the prototype tool PRECiSA that generates formal proof certificates stating the correctness of the computed round-off errors
A Mixed Real and Floating-Point Solver
Reasoning about mixed real and floating-point constraints is essential for developing accurate analysis tools for floating-point pro- grams. This paper presents FPRoCK, a prototype tool for solving mixed real and floating-point formulas. FPRoCK transforms a mixed formula into an equisatisfiable one over the reals. This formula is then solved using an off-the-shelf SMT solver. FPRoCK is also integrated with the PRECiSA static analyzer, which computes a sound estimation of the round-off error of a floating-point program. It is used to detect infeasible computational paths, thereby improving the accuracy of PRECiSA
Fifteen years of XMM-Newton and Chandra monitoring of Sgr A*: Evidence for a recent increase in the bright flaring rate
We present a study of the X-ray flaring activity of Sgr A* during all the 150
XMM-Newton and Chandra observations pointed at the Milky Way center over the
last 15 years. This includes the latest XMM-Newton and Chandra campaigns
devoted to monitoring the closest approach of the very red Br-Gamma emitting
object called G2. The entire dataset analysed extends from September 1999
through November 2014. We employed a Bayesian block analysis to investigate any
possible variations in the characteristics (frequency, energetics, peak
intensity, duration) of the flaring events that Sgr A* has exhibited since
their discovery in 2001. We observe that the total bright-or-very bright flare
luminosity of Sgr A* increased between 2013-2014 by a factor of 2-3 (~3.5 sigma
significance). We also observe an increase (~99.9% significance) from
0.27+-0.04 to 2.5+-1.0 day^-1 of the bright-or-very bright flaring rate of Sgr
A*, starting in late summer 2014, which happens to be about six months after
G2's peri-center passage. This might indicate that clustering is a general
property of bright flares and that it is associated with a stationary noise
process producing flares not uniformly distributed in time (similar to what is
observed in other quiescent black holes). If so, the variation in flaring
properties would be revealed only now because of the increased monitoring
frequency. Alternatively, this may be the first sign of an excess accretion
activity induced by the close passage of G2. More observations are necessary to
distinguish between these two hypotheses.Comment: Accepted for publication in MNRA
JANUS: an FPGA-based System for High Performance Scientific Computing
This paper describes JANUS, a modular massively parallel and reconfigurable
FPGA-based computing system. Each JANUS module has a computational core and a
host. The computational core is a 4x4 array of FPGA-based processing elements
with nearest-neighbor data links. Processors are also directly connected to an
I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for,
but not limited to, the requirements of a class of hard scientific applications
characterized by regular code structure, unconventional data manipulation
instructions and not too large data-base size. We discuss the architecture of
this configurable machine, and focus on its use on Monte Carlo simulations of
statistical mechanics. On this class of application JANUS achieves impressive
performances: in some cases one JANUS processing element outperfoms high-end
PCs by a factor ~ 1000. We also discuss the role of JANUS on other classes of
scientific applications.Comment: 11 pages, 6 figures. Improved version, largely rewritten, submitted
to Computing in Science & Engineerin
Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program
The James Webb Space Telescope will revolutionize transiting exoplanet
atmospheric science due to its capability for continuous, long-duration
observations and its larger collecting area, spectral coverage, and spectral
resolution compared to existing space-based facilities. However, it is unclear
precisely how well JWST will perform and which of its myriad instruments and
observing modes will be best suited for transiting exoplanet studies. In this
article, we describe a prefatory JWST Early Release Science (ERS) program that
focuses on testing specific observing modes to quickly give the community the
data and experience it needs to plan more efficient and successful future
transiting exoplanet characterization programs. We propose a multi-pronged
approach wherein one aspect of the program focuses on observing transits of a
single target with all of the recommended observing modes to identify and
understand potential systematics, compare transmission spectra at overlapping
and neighboring wavelength regions, confirm throughputs, and determine overall
performances. In our search for transiting exoplanets that are well suited to
achieving these goals, we identify 12 objects (dubbed "community targets") that
meet our defined criteria. Currently, the most favorable target is WASP-62b
because of its large predicted signal size, relatively bright host star, and
location in JWST's continuous viewing zone. Since most of the community targets
do not have well-characterized atmospheres, we recommend initiating preparatory
observing programs to determine the presence of obscuring clouds/hazes within
their atmospheres. Measurable spectroscopic features are needed to establish
the optimal resolution and wavelength regions for exoplanet characterization.
Other initiatives from our proposed ERS program include testing the instrument
brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the
Enabling Transiting Exoplanet Science with JWST workshop held November 16 -
18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted
for publication in PAS
A mixed stirring mechanism for debris discs with giant and dwarf planetary perturbations
Debris discs consist of belts of bodies ranging in size from dust grains to planetesimals; these belts are visible markers of planetary systems around other stars that can reveal the influence of extrasolar planets through their shape and structure. Two key stirring mechanisms – self-stirring by planetesimals and secular perturbation by an external giant planet – have been identified to explain the dynamics of planetesimal belts; their relative importance has been studied independently, but are yet to be considered in combination. In this work, we perform a suite of 286 N-body simulations exploring the evolution of debris discs over 1 Gyr, combining the gravitational perturbations of both dwarf planets embedded in the discs, and an interior giant planet. Our systems were somewhat modelled after the architecture of the outer Solar system: a Solar mass star, a single massive giant planet at 30 au (MGP = 10 to 316 M?), and a debris disc formed by 100 massive dwarf planets and 1000 massless particles (MDD = 3.16 to 31.6 M?). We present the evolution of both the disc and the giant planet after 1 Gyr. The time evolution of the average eccentricity and inclination of the disc is strongly dependent on the giant planet mass as well as on the remaining disc mass. We also found that efficient stirring is achieved even with small disc masses. In general, we find that a mixed mechanism is more efficient in the stirring of cold debris discs than either mechanism acting in isolation
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
- …
