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Abstract. Reasoning about mixed real and floating-point constraints
is essential for developing accurate analysis tools for floating-point pro-
grams. This paper presents FPRoCK, a prototype tool for solving mixed
real and floating-point formulas. FPRoCK transforms a mixed formula
into an equisatisfiable one over the reals. This formula is then solved
using an off-the-shelf SMT solver. FPRoCK is also integrated with the
PRECiSA static analyzer, which computes a sound estimation of the
round-off error of a floating-point program. It is used to detect infeasible
computational paths, thereby improving the accuracy of PRECiSA.

1 Introduction

Floating-point numbers are frequently used as an approximation of real numbers
in computer programs. A round-off error originates from the difference between
a real number and its floating-point representation, and accumulates throughout
a computation. The resulting error may affect both the computed value of arith-
metic expressions as well as the control flow of the program. To reason about
floating-point computations with possibly diverging control flows, it is essential
to solve mixed real and floating-point arithmetic constraints. This is known to be
a difficult problem. In fact, constraints that are unsatisfiable over the reals may
hold over the floats and vice-versa. In addition, combining the theories is not
trivial since floating-point and real arithmetic do not enjoy the same properties.

Modern Satisfiability Modulo Theories (SMT) solvers, such as Mathsat [3]
and Z3 [11], encode floating-point numbers with bit-vectors. This technique is
usually inefficient due to the size of the binary representation of floating-point
numbers. For this reason, several abstraction techniques have been proposed
to approximate floating-point formulas and to solve them in the theory of real
numbers. Approaches based on the counterexample-guided abstraction refinement
(CEGAR) framework [2,14,18] simplify a floating-point formula and solve it in a
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proxy theory that is more efficient than the original one. If a model is found for
the simplified formula, a check on whether this is also a model for the original
formula is performed. If it is, the model is returned, otherwise, the proxy theory
is refined. Realizer [9] is a framework built on the top of Z3 to solve floating-point
formulas by translating them into equivalent ones in real arithmetic. Molly [14]
implements a CEGAR loop where floating-point constraints are lifted in the
proxy theory of mixed real and floating-point arithmetics. To achieve this, it
uses an extension of Realizer that supports mixed real and floating-point con-
straints. However, this extension is embedded in Molly and cannot be used as
a standalone tool. The Colibri [10] solver handles the combination of real and
floating-point constraints by using disjoint floating-point intervals and differ-
ence constraints. Unfortunately, the publicly available version of Colibri does
not support all the rounding modalities and the negation of Boolean formu-
las. JConstraints [7] is a library for constraint solving that includes support for
floating-points by encoding them into reals.

This paper presents a prototype solver for mixed real and floating-point
constraints called FPRoCK.4 It extends the transformation defined in Real-
izer [9] to mixed real/floating-point constraints. Given a mixed real-float for-
mula, FPRoCK generates an equisatisfiable real arithmetic formula that can be
solved by an external SMT solver. In contrast to Realizer, FPRoCK supports
mixed-precision floating-point expressions and different ranges for the input vari-
ables. FPRoCK is also employed to improve the accuracy of the static analyzer
PRECiSA [16]. In particular, it identifies spurious execution traces whose path
conditions are unsatisfiable, which allows PRECiSA to discard them.

2 Solving Mixed Real/Floating-Point Formulas

A floating-point number [8], or simply a float, can be represented by a tuple
(s,m, exp) where s is a sign bit, m is an integer called the significand (or man-
tissa), and exp is an integer exponent. A float (s,m, exp) encodes the real number
(−1)s ⋅m ⋅ 2exp . Henceforth, F represents the set of floating-point numbers. Let
ṽ be a floating-point number that represents a real number r . The difference
∣ṽ − r ∣ is called the round-off error (or rounding error) of ṽ with respect to r .
Each floating-point number has a format f that specifies its dimensions and pre-
cision, such as single or double. The expression Ff(r) denotes the floating-point
number in format f closest to r assuming a given rounding mode.

Let V and Ṽ be two disjoint sets of variables representing real and floating-
point values respectively. The set A of mixed arithmetic expressions is defined
by the grammar

A ∶∶= d ∣ x ∣ d̃ ∣ x̃ ∣ A⊙A ∣ A⊙̃A ∣ Ff(A),

where d ∈ R, x ∈ V, ⊙ ∈ {+,−,∗, /, ∣ ⋅ ∣} (the set of basic real number arithmetic

operators), d̃ ∈ F, x̃ ∈ Ṽ, ⊙̃ ∈ {+̃f , −̃f , ∗̃f , /̃f} (the set of basic floating-point arith-
metic operators) and f ∈ {single,double} denotes the desired precision for the

4 The FPRoCK distribution is available at https://github.com/nasa/FPRoCK.
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result. The rounding operator Ff is naturally extended to arithmetic expres-
sions. According to the IEEE-754 standard [8], each floating-point operation is
computed in exact real arithmetic and then rounded to the nearest float, i.e.,
A⊙̃fA = Ff(A ⊙ A). Since floats can be exactly represented as real numbers,
an explicit transformation is not necessary. The set of mixed real-float Boolean
expressions B is defined by the grammar

B ∶∶= true ∣ false ∣ B ∧B ∣ B ∨B ∣ ¬B ∣ A < A ∣ A = A,

where A ∈ A.
The input to FPRoCK is a formula φ̃ ∈ B that may contain both real and

floating-point variables and arithmetic operators. Each variable is associated
with a type (real, single or double precision floating-point) and range that can
be either bounded, e.g., [1,10], or unbounded, e.g., [−∞,+∞]. The precision of
a mixed-precision floating-point arithmetic operation is automatically detected
and set to the maximum precision of its arguments. Given a mixed formula
φ̃ ∈ B, FPRoCK generates a formula φ over the reals such that φ̃ and φ are
equisatisfiable. Floating-point expressions are transformed into equivalent real-
valued expressions using the approach presented in [9], while the real variables
and operators are left unchanged. It is possible to define x ⊙̃ y as

x ⊙̃ y = (
ρ(x⊙y

2exp
⋅ 2p)

2p
) ⋅ 2exp , (2.1)

where p is the precision of the format, exp = max{i ∈ Z ∣ 2i ≤ ∣x ⊙ y∣}, and
ρ ∶ R → Int is a function implementing the rounding modality [9]. Therefore,
given a floating-point formula φ̃, an equisatisfiable formula without floating-point
operators is obtained by replacing every occurrence of x ⊙̃ y using Equation (2.1).
This is equivalent to replacing the occurrences of x ⊙̃ y with a new fresh real-
valued variable v and imposing v = x ⊙̃ y. From Equation (2.1) it follows that
v ⋅ 2p−exp = ρ((x⊙ y) ⋅ 2p−exp). Thus, the final formula φ is

φ ∶= φ̃[v/x ⊙̃ y] ∧ v ⋅ 2p−exp = ρ((x⊙ y) ⋅ 2p−exp), (2.2)

where φ̃[v/x ⊙̃ y] denotes the Boolean formula φ̃ where all the occurrences of
x ⊙̃ y are replaced by v. The precision p is a constant that depends on the chosen
floating-point format, while exp is an integer representing the exponent of the
binary representation of x ⊙̃ y.

To find an assignment for the exponent exp, FPRoCK performs in parallel
a sequential and binary search over the dimension of x ⊙̃ y, as opposed to the
simple sequential search implemented in Realizer. The implementation of the
function ρ depends on the selected rounding mode and can be defined using floor
and ceiling operators (see [9] for details). Therefore, the transformed formula φ
does not contain any floating-point operators, and hence it can be solved by
any SMT solver that supports the fragment of real/integer arithmetics including
floor and ceiling operators. FPRoCK uses three off-the-shelf SMT solvers as
back-end procedures to solve the transformed formula: Mathsat [3], Z3 [11], and



4 R. Salvia et al.

CVC4 [1]. Optionally, the constraint solver Colibri [10] is also available for use
within FPRoCK. FPRoCK provides the option to relax the restriction on the
minimum exponent to handle subnormal floats. This solution is sound in the
sense that it preserves the unsatisfiability of the original formula. However, if
this option is used, it is possible that FPRoCK finds an assignment to a float that
is not representable in the chosen precision, and therefore is not a solution for
the original formula. Furthermore, FPRoCK currently does not support special
floating-point values such as NaN and Infinity.

3 Integrating FPRoCK in PRECiSA

PRECiSA5 (Program Round-off Error Certifier via Static Analysis) [16] is a
static analyzer based on abstract interpretation [4]. PRECiSA accepts as input a
floating-point program and automatically generates a sound over-approximation
of the floating-point round-off error and a proof certificate in the Prototype Ver-
ification System (PVS) [13] ensuring its correctness. For every possible combina-
tion of real and floating-point execution paths, PRECiSA computes a conditional
error bound of the form ⟨η, η̃⟩ ↠ (r, e), where η is a symbolic path condition
over the reals, η̃ is a symbolic path condition over the floats, and r, e are sym-
bolic arithmetic expressions over the reals. Intuitively, ⟨η, η̃⟩ ↠ (r, e) indicates
that if the conditions η and η̃ are satisfied, the output of the program using
exact real number arithmetic is r and the round-off error of the floating-point
implementation is bounded by e.

PRECiSA initially computes round-off error estimations in symbolic form so
that the analysis is modular. Given the initial ranges for the input variables,
PRECiSA uses the Kodiak global optimizer [12] to maximize the symbolic error
expression e. Since the analysis collects information about real and floating-
point execution paths, it is possible to consider the error of taking the incorrect
branch compared to the ideal execution using real arithmetic. This happens
when the guard of a conditional statement contains a floating-point expression
whose round-off error makes the actual Boolean value of the guard differ from the
value that would be obtained assuming real arithmetic. When the floating-point
computation diverges from the real one, it is said to be unstable.

For example, consider the function sign(x̃) = if x̃ ≥ 0 then 1 else −1. PRE-
CiSA computes a set of four different conditional error bounds: {⟨χr(x̃) ≥ 0, x̃ ≥
0⟩ ↠ (r = 1, e = 0), ⟨χr(x̃) < 0, x̃ < 0⟩ ↠ (r = −1, e = 0), ⟨χr(x̃) ≥ 0, x̃ < 0⟩ ↠
(r = −1, e = 2), ⟨χr(x̃) < 0, x̃ ≥ 0⟩ ↠ (r = 1, e = 2)}. The function χr ∶ Ṽ → V
associates with the floating-point variable x̃ a variable x ∈ V representing the
real value of x̃. The first two elements correspond to the cases where real and
floating-point computational flows coincide. In these cases, the error is 0 since
the output is an integer number with no rounding error. The other two elements
model the unstable paths. In these cases, the error is 2, which corresponds to
the difference between the output of the two branches. PRECiSA may produce

5 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.
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conditional error bounds with unsatisfiable symbolic conditions (usually unsta-
ble), which correspond to execution paths that cannot take place. The presence
of these spurious elements affects the accuracy of the computed error bound. For
instance, in the previous example, if ∣χr(x̃) − x̃∣ ≤ 0 both unstable cases can be
removed, and the overall error would be 0 instead of 2.

Real and floating-point conditions can be checked separately using SMT
solvers that support real and/or floating-point arithmetic. However, the incon-
sistency often follows from the combination of the real and floating-point con-
ditions. In fact, the floating-point expressions occurring in the conditions are
implicitly related to their real arithmetic counterparts by their rounding error.
Therefore, besides checking the two conditions separately, it is necessary to check
them in conjunction with a set of constraints relating each arithmetic expression
ẽxpr occurring in the conditions with its real number counterpart RA(ẽxpr).
RA(ẽxpr) is defined by simply replacing in ẽxpr each floating-point operation
with the corresponding real one and by applying χr to floating-point variables.

FPRoCK is suitable for solving such constraints thanks to its ability to reason
about mixed real and floating-point formulas. Given a set ι of ranges for the
input variables, for each conditional error bound c = ⟨η, η̃⟩t ↠ (r, e) computed
by PRECiSA, the following formula ψ modeling the information contained in
the path conditions is checked using FPRoCK:

ψ ∶= η ∧ η̃ ∧⋀{∣ẽxpr −RA(ẽxpr)∣ ≤ ε ∣ ẽxpr occurs in η̃,

ẽxpr /∈ Ṽ, ẽxpr /∈ F, ε = max(e)∣ι}
(3.1)

The value max(e)∣ι is the round-off error of ẽxpr assuming the input ranges
in ι, and it is obtained by maximizing the symbolic error expression e with
the Kodiak global optimizer. If ψ is unsatisfiable, then c is dropped from the
solutions computed by PRECiSA. Otherwise, a counterexample is generated that
may help to discover cases for which the computation is diverging or unsound.

Since FPRoCK currently supports only the basic arithmetic operators, while
PRECiSA supports a broader variety of operators including transcendental func-
tions, a sound approximation is needed for converting PRECiSA conditions into
a valid input for FPRoCK. The proposed approach replaces in ψ each floating-
point (respectively real) arithmetic expression with a fresh floating-point (re-
spectively real) variable. This is sound but not complete, meaning it preserves
just the unsatisfiability of the original formula. In other words, if ψ[vi/ẽxpr i]ni=1
is unsatisfiable it follows that ψ is unsatisfiable, but if a solution is found for
ψ[vi/ẽxpr i]ni=1 there is no guarantee that an assignment satisfying ψ exists. This
is enough for the purpose of eliminating spurious conditional bounds since it as-
sures that no feasible condition gets eliminated. In practice, it is accurate enough
to detect spurious unstable paths. When a path condition is deemed unsatisfiable
by FPRoCK, PRECiSA states such unsatisfiability in the PVS formal certificate.
For simple path conditions, this property can be automatically checked by PVS.
Unfortunately, there are cases where human intervention is required to verify
this part of the certificates.
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Table 1. Experimental results showing absolute round-off error bounds and execution
time in seconds (best results in bold).

Benchmark
PRECiSA PRECiSA+FPRoCK Rosa

Error Time(s) Error Time(s) Error Time(s)

cubicSpline 2.70E+01 0.07 2.70E+01 97.8 2.50E-01 24.1
eps line 2.00E+00 0.02 1.00E+00 48.8 2.00E+00 15.5
jetApprox 1.51E+01 12.79 8.11E+00 263.3 4.97E+00 924.8
linearFit 1.08E+00 0.06 5.42E-01 259.7 3.19E-01 12.4
los 2.00E+00 0.02 1.00E+00 46.2 not supported n/a
quadraticFit 3.68E+00 0.90 3.68E+00 259.8 1.27E-01 82.4
sign 2.00E+00 0.02 1.00E+00 32.1 2.00E+00 4.7
simpleInterpolator 2.25E+02 0.03 1.16E+02 93.8 3.33E+01 6.3
smartRoot 1.75E+00 0.32 1.75E+00 0.6 not supported n/a
styblinski 9.35E+01 1.06 6.66E+01 260.1 6.55E+00 77.0
tau 8.40E+06 0.03 8.00E+06 101.8 8.40E+06 20.7

Table 1 compares the original version of PRECiSA with the enhanced version
that uses FPRoCK to detect the unsatisfiable conditions, along with the analysis
tool Rosa [6] which also computes an over-approximation of the round-off error
of a program. All the benchmarks are obtained by applying the transformation
defined in [17] to code fragments from avionics software and the FPBench li-
brary [5]. A transformed program is guaranteed to return either the result of
the original floating-point program, when it can be assured that both its real
and floating-point flows agree, or a warning when these flows may diverge. The
results show that FPRoCK helps PRECiSA improving the computed round-off
error in 8 out of 11 benchmarks total. FPRoCK runs all search encoding (linear,
binary) plus solver (MathSAT5, CVC4, Z3) combinations in parallel. It waits for
all solvers to finish and performs a check on the consistency of the solutions.

4 Conclusions

This paper presents FPRoCK, a prototype tool for solving mixed real and
floating-point formulas. FPRoCK extends the technique used in Realizer by
adding support for such mixed formulas. FPRoCK is integrated into PRECiSA
to improve its precision. Similarly, it could be integrated into other static analyz-
ers, such as FPTaylor [15]. The current version of FPRoCK has some limitations
in terms of expressivity and efficiency. Support for a vast range of operators, in-
cluding transcendental functions, is contingent on the expressive power of the
underlying SMT solvers. The performance of FPRoCK can be improved by re-
turning a solution as soon as the first solver finalizes its search. However, finding
an assignment for the exponent of each floating-point variable is still the major
bottleneck of the analysis. The use of a branch-and-bound search to divide the
state-space may help to mitigate this problem.
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