132 research outputs found

    Conservation in Montana

    Get PDF
    Conservation in Montan

    Progressive star formation in the young galactic super star cluster NGC 3603

    Get PDF
    Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.Comment: 10 pages, 8 figures, accepted for publication in The Astrophysical Journa

    Star formation in 30 Doradus

    Get PDF
    Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136.Comment: 15 pages, 12 figures. Accepted for publication in The Astrophysical Journa

    The Initial Mass Function and Disk Frequency of the Rho Ophiuchi Cloud: An Extinction-Limited Sample

    Full text link
    We have completed an optical spectroscopic survey of an unbiased, extinction-limited sample of candidate young stars covering 1.3 square degrees of the Rho Ophiuchi star forming region. While infrared, X-ray, and optical surveys of the cloud have identified many young stellar objects (YSOs), these surveys are biased towards particular stages of stellar evolution and are not optimal for studies of the disk frequency and initial mass function.We have obtained over 300 optical spectra to help identify 135 association members based on the presence of H-alpha in emission, lithium absorption, X-ray emission, a mid-infrared excess, a common proper motion, reflection nebulosity, and/or extinction considerations. Spectral types along with R and I band photometry were used to derive effective temperatures and bolometric luminosities for association members to compare with theoretical tracks and isochrones for pre-main-sequence stars. An average age of 3.1 Myr is derived for this population which is intermediate between that of objects embedded in the cloud core of Rho Ophiuchi and low mass stars in the Upper Scorpius subgroup. Consistent with this age we find a circumstellar disk frequency of 27% plus or minus 5%. We also constructed an initial mass function for an extinction-limited sample of 123 YSOs (A_v less than or equal to 8 mag), which is consistent with the field star initial mass function for YSOs with masses > 0.2 M_sun. There may be a deficit of brown dwarfs but this result relies on completeness corrections and requires confirmation.Comment: 46 pages, 7 figures, 4 table

    Detection of brown dwarf-like objects in the core of NGC3603

    Full text link
    We use near-infrared data obtained with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to identify objects having the colors of brown dwarfs (BDs) in the field of the massive galactic cluster NGC 3603. These are identified through use of a combination of narrow and medium band filters spanning the J and H bands, and which are particularly sensitive to the presence of the 1.3-1.5{\mu}m H2O molecular band - unique to BDs. We provide a calibration of the relationship between effective temperature and color for both field stars and for BDs. This photometric method provides effective temperatures for BDs to an accuracy of {\pm}350K relative to spectroscopic techniques. This accuracy is shown to be not significantly affected by either stellar surface gravity or uncertainties in the interstellar extinction. We identify nine objects having effective temperature between 1700 and 2200 K, typical of BDs, observed J-band magnitudes in the range 19.5-21.5, and that are strongly clustered towards the luminous core of NGC 3603. However, if these are located at the distance of the cluster, they are far too luminous to be normal BDs. We argue that it is unlikely that these objects are either artifacts of our dataset, normal field BDs/M-type giants or extra-galactic contaminants and, therefore, might represent a new class of stars having the effective temperatures of BDs but with luminosities of more massive stars. We explore the interesting scenario in which these objects would be normal stars that have recently tidally ingested a Hot Jupiter, the remnants of which are providing a short-lived extended photosphere to the central star. In this case, we would expect them to show the signature of fast rotation.Comment: 26 Pages, 8 Figures, Accepted for publication on Ap

    Prognostic significance of nuclear expression of UMP-CMP kinase in triple negative breast cancer patients

    Get PDF
    We have previously identified UMP-CMP kinase (CMPK1) as a prognostic marker for triple negative breast cancer (TNBC) by mass spectrometry (MS). In this study we evaluated CMPK1 association to prognosis in an independent set of samples by immunohistochemistry (IHC) and assessed biological pathways associated to its expression through gene set enrichment analysis (GSEA). A total of 461 TNBC paraffin-embedded tissues were collected from different academic hospitals in Europe, incorporated into tissue micro-arrays (TMA), and stained for CMPK1 expression. We also collected gene expression data of 60 samples, which were also present in the TMA, for GSEA correlation analysis. CMPK1 IHC staining showed both cytoplasmic and nuclear components. While cytoplasmic CMPK1 did not show any association to metastasis free survival (MFS), nuclear CMPK1 was associated to poor prognosis independently from other prognostic factors in stratified Cox regression analyses. GSEA correlation analysis of the nuclear CMPK1-stratified gene expression dataset showed a significant enrichment of extracellular matrix (ECM; positive correlation) and cell cycle (negative correlation) associated genes. We have shown here that nuclear CMPK1 is indicative of poor prognosis in TNBCs and that its expression may be related to dysregulation of ECM and cell cycle molecules

    Proton inelastic scattering on 68,70,72^{68,70,72}Ni

    Get PDF
    The proton inelastic scattering on 68,70,72^{68,70,72}Ni isotopes was measured at the NSCL at MSU, employing the S800 spectrometer coupled to the GRETINA γ-ray array. The aim of the experiment was to determine the degree of collectivity in these neutron-rich Z = 28 isotopes. The use of a hadronic probe allows to complement previous Coulomb excitation measurements of the reduced transition probability B(E2; 0+^+ → 2+^+) and deduce the neutron-to-proton transition matrix elements ratio. The high resolution in γ-ray energy achievable with GRETINA gives large control on feeding transitions, thus reducing possible systematics errors in the determination of transition strengths

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Full text link
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.Comment: 55 pages, 10 figure

    Imaging Lunar Craters with the Lucy Long Range Reconnaissance Imager (L'LORRI): A Resolution Test for NASA's Lucy Mission

    Get PDF
    NASA's Lucy mission is designed to better understand the unique population of Trojan asteroids. Trojans were probably captured in Jupiter's L4 and L5 points early in the solar system's evolution and little altered since then. A critical investigation of Lucy is to use its highest-resolution camera, the Lucy Long Range Reconnaissance Imager (L'LORRI), to image Trojans' surfaces to understand their geology and impact crater populations. Through crater statistics, the population of smaller bodies that produced those impacts, relative age differences across the bodies, and other comparative investigations between bodies can be studied. Mapping the crater population to the minimum diameters needed to achieve Lucy's objectives might require image subsampling and deconvolution ("processing") to improve the spatial resolution, a process whereby multiple, slightly offset images are merged to create a single, better-sampled image and deconvolved with L'LORRI's point-spread function. Lucy's first Earth Gravity Assist (EGA1) provided an opportunity to test this process's accuracy using L'LORRI images of the Moon, whose crater population is well characterized and therefore provides ground-truth testing. Specifically, the lunar crater imaging by L'LORRI during EGA1 allowed us to compare crater statistics derived from raw and processed L'LORRI images with ground-truth statistics derived from higher-resolution lunar imaging from other missions. The results indicate the processing can improve impact crater statistics such that features can be identified and measured to ~70% the diameter that they can otherwise be reliably mapped on native L'LORRI images. This test's results will be used in the observation designs for the Lucy flyby targets

    Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs

    Full text link
    Abstract Background While the taxonomy and genomics of environmental strains from the P. fluorescens species-complex has been reported, little is known about P. fluorescens strains from clinical samples. In this report, we provide the first genomic analysis of P. fluorescens strains in which human vs. environmental isolates are compared. Results Seven P. fluorescens strains were isolated from respiratory samples from cystic fibrosis (CF) patients. The clinical strains could grow at a higher temperature (>34 °C) than has been reported for environmental strains. Draft genomes were generated for all of the clinical strains, and multi-locus sequence analysis placed them within subclade III of the P. fluorescens species-complex. All strains encoded type- II, −III, −IV, and -VI secretion systems, as well as the widespread colonization island (WCI). This is the first description of a WCI in P. fluorescens strains. All strains also encoded a complete I2/PfiT locus and showed evidence of horizontal gene transfer. The clinical strains were found to differ from the environmental strains in the number of genes involved in metal resistance, which may be a possible adaptation to chronic antibiotic exposure in the CF lung. Conclusions This is the largest comparative genomics analysis of P. fluorescens subclade III strains to date and includes the first clinical isolates. At a global level, the clinical P. fluorescens subclade III strains were largely indistinguishable from environmental P. fluorescens subclade III strains, supporting the idea that identifying strains as ‘environmental’ vs ‘clinical’ is not a phenotypic trait. Rather, strains within P. fluorescens subclade III will colonize and persist in any niche that provides the requirements necessary for growth.http://deepblue.lib.umich.edu/bitstream/2027.42/116129/1/12864_2015_Article_2261.pd
    • 

    corecore