2,606 research outputs found

    Sharp crossover from composite fermionization to phase separation in mesoscopic mixtures of ultracold bosons

    Get PDF
    We show that a two-component mixture of a few repulsively interacting ultracold atoms in a one-dimensional trap possesses very different quantum regimes and that the crossover between them can be induced by tuning the interactions in one of the species. In the composite fermionization regime, where the interactions between both components are large, none of the species show large occupation of any natural orbital. Our results show that by increasing the interaction in one of the species, one can reach the phase-separated regime. In this regime, the weakly interacting component stays at the center of the trap and becomes almost fully phase coherent, while the strongly interacting component is displaced to the edges of the trap. The crossover is sharp, as observed in the in the energy and the in the largest occupation of a natural orbital of the weakly interacting species. Such a transition is a purely mesoscopic effect which disappears for large atom numbers.Comment: 5 pages, 3 figure

    PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs

    Full text link
    Models of dark matter with ~ GeV scale force mediators provide attractive explanations of many high energy anomalies, including PAMELA, ATIC, and the WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that are automatically present in such theories, these models naturally explain the DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and exciting dark matter (XDM) scenarios, respectively. Interestingly, with only weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited states with delta < 2 m_e is longer than the age of the universe. The fractional relic abundance of these excited states depends on the temperature of kinetic decoupling, but can be appreciable. There could easily be other mechanisms for rapid decay, but the consequences of such long-lived states are intriguing. We find that CDMS constrains the fractional relic population of ~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2. Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can push this limit significantly lower. We also consider the possibility that the DAMA excitation occurs from a metastable state into the XDM state, which decays via e+e- emission, which allows lighter states to explain the INTEGRAL signal due to the small kinetic energies required. Such models yield dramatic signals from down-scattering, with spectra peaking at high energies, sometimes as high as ~1 MeV, well outside the usual search windows. Such signals would be visible at future Ar and Si experiments, and may be visible at Ge and Xe experiments. We also consider other XDM models involving ~ 500 keV metastable states, and find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure

    A dynamic execution time estimation model to save energy in heterogeneous multicores running periodic tasks

    Full text link
    this is the author’s version of a work that was accepted for publication in Future Generation Computer Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Future Generation Computer Systems, vol. 56 (2016). DOI 10.1016/j.future.2015.06.011.Nowadays, real-time embedded applications have to cope with an increasing demand of functionalities, which require increasing processing capabilities. With this aim real-time systems are being implemented on top of high-performance multicore processors that run multithreaded periodic workloads by allocating threads to individual cores. In addition, to improve both performance and energy savings, the industry is introducing new multicore designs such as ARM’s big.LITTLE that include heterogeneous cores in the same package. A key issue to improve energy savings in multicore embedded real-time systems and reduce the number of deadline misses is to accurately estimate the execution time of the tasks considering the supported processor frequencies. Two main aspects make this estimation difficult. First, the running threads compete among them for shared resources. Second, almost all current microprocessors implement Dynamic Voltage and Frequency Scaling (DVFS) regulators to dynamically adjust the voltage/frequency at run-time according to the workload behavior. Existing execution time estimation models rely on off-line analysis or on the assumption that the task execution time scales linearly with the processor frequency, which can bring important deviations since the memory system uses a different power supply. In contrast, this paper proposes the Processor–Memory (Proc–Mem) model, which dynamically predicts the distinct task execution times depending on the implemented processor frequencies. A power-aware EDF (Earliest Deadline First)-based scheduler using the Proc–Mem approach has been evaluated and compared against the same scheduler using a typical Constant Memory Access Time model, namely CMAT. Results on a heterogeneous multicore processor show that the average deviation of Proc–Mem is only by 5.55% with respect to the actual measured execution time, while the average deviation of the CMAT model is 36.42%. These results turn in important energy savings, by 18% on average and up to 31% in some mixes, in comparison to CMAT for a similar number of deadline misses. © 2015 Elsevier B.V. All rights reserved.This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant TIN2012-38341-004-01, and by the Intel Early Career Faculty Honor Program Award.Sahuquillo Borrás, J.; Hassan Mohamed, H.; Petit Martí, SV.; March Cabrelles, JL.; Duato Marín, JF. (2016). A dynamic execution time estimation model to save energy in heterogeneous multicores running periodic tasks. Future Generation Computer Systems. 56:211-219. https://doi.org/10.1016/j.future.2015.06.011S2112195

    Cost-effectiveness of classroom-based cognitive behaviour therapy in reducing symptoms of depression in adolescents: a trial-based analysis

    Get PDF
    Background A substantial minority of adolescents suffer from depression and it is associated with increased risk of suicide, social and educational impairment, and mental health problems in adulthood. A recently conducted randomized controlled trial in England evaluated the effectiveness of a manualized universally delivered age-appropriate CBT programme in school classrooms. The cost-effectiveness of the programme for preventing low mood and depression for all participants from a health and social care sector perspective needs to be determined. Methods A trial-based cost-effectiveness analysis based on a cluster-randomized controlled trial (trial registration – ISRCTN 19083628) comparing classroom-based CBT with usual school provision of Personal Social and Health Education. Per-student cost of intervention was estimated from programme records. The study was undertaken in eight mixed-sex UK secondary schools, and included 3,357 school children aged 12 to 16 years (in the two trial arms evaluated in the cost-effectiveness analysis). The main outcome measures were individual self-reported data on care costs, Quality-Adjusted Life-Years (QALYs, based on the EQ-5D health-related quality-of-life instrument) and symptoms of depression (Short Mood and Feelings Questionnaire) at baseline, 6 and 12 months. Results Although there was lower quality-adjusted life-years over 12 months (−.05 QALYs per person, 95% confidence interval −.09 to −.005, p = .03) with CBT, this is a ‘clinically’ negligible difference, which was not found in the complete case analyses. There was little evidence of any between-arm differences in SMFQ scores (0.19, 95% CI −0.57 to 0.95, p = .62), or costs (£142, 95% CI −£132 to £415, p = .31) per person for CBT versus usual school provision. Conclusions Our analysis suggests that the universal provision of classroom-based CBT is unlikely to be either more effective or less costly than usual school provision

    Quantum simulation of conductivity plateaux and fractional quantum Hall effect using ultracold atoms

    Get PDF
    We analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced by rotation of the trapping parabolic potential. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases

    ARTEMIS: A complete mission architecture to bridge the gap between humanity and near-Earth asteroids

    Get PDF
    Asteroid retrieval missions have recently attracted increasing interest from the community and could provide opportunities for scienti c exploration, resource utilisation and even the development of planetary defence strategies. This paper was developed as a result of a 6-month MSc group project, realised by a total of 14 students at Cran eld University pursuing the Astronautics & Space Engineering degree. An overall system design is proposed for a technology demonstrator mission to move a near-Earth asteroid into an easily-accessible location where it could be further explored by future missions. The target nal orbit is a southern halo orbit around the Lagrange point (L2) on the Sun-Earth system. ARTEMIS (Asteroid Retrieval Technology Mission) abides by ESAs constraints for a Large (L) mission call: realised in only one launch with Ariane 64, an operational duration of less than 15 years and a cost at completion of at most e1100M. The proposed mission combines the design of optimal trajectories, employs advanced solar electric propulsion and introduces a be tting level of spacecraft autonomy. The target is the 2006 RH120 asteroid, with an approximate diameter of 6.5 m and mass of roughly 350 tons. To re ne existing data, the ARROW CubeSat mission (Asteroid Reconnaissance to Research Object Worthiness) is to be launched a year prior to the main mission to probe the asteroid via a y-by. ARROW will provide valuable information, such as the asteroids spin rate, rotational axis and better mass estimate, increasing the overall chance of mission success. The main mission will then capture and secure the asteroid using a mechanism of arm-like booms with xenon- lled VectranTM bags. To allow for proper adaptability to the objects shape and mass distribution, as well as preserve the asteroid unaltered, the mechanism is fully contained in fabric that encapsulates the asteroid. The paper concludes that such a mission is conditionally feasible, and summarises the design process resulting in the nal overall mission baseline design. It also examines the practicality of the suggested design for future missions such as space debris removal or its ability to retrieve celestial bodies with variable mass and shape. Proper adaptation of the design could allow for retrieval of similar size or smaller objects. The future implementation of this mission may further the understanding of the origin of the solar system and act as a catalyst to a new celestial body exploitation industry

    Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development. [Methodology/Principal Findings]: Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in addition to repressing the flowering promoting genes CONSTANS (CO), FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), BRM also represses expression of the general flowering repressor FLOWERING LOCUS C (FLC). Thus, in brm mutant plants FLC expression is elevated, and FLC chromatin exhibits increased levels of histone H3 lysine 4 tri-methylation and decreased levels of H3 lysine 27 tri-methylation, indicating that BRM imposes a repressive chromatin configuration at the FLC locus. However, brm mutants display a normal vernalization response, indicating that BRM is not involved in vernalization-mediated FLC repression. Analysis of double mutants suggests that BRM is partially redundant with the autonomous pathway. Analysis of genetic interactions between BRM and the histone H2A.Z deposition machinery demonstrates that brm mutations overcome a requirement of H2A.Z for FLC activation suggesting that in the absence of BRM, a constitutively open chromatin conformation renders H2A.Z dispensable. [Conclusions/Significance]: BRM is critical for phase transition in Arabidopsis. Thus, BRM represses expression of the flowering promoting genes CO, FT and SOC1 and of the flowering repressor FLC. Our results indicate that BRM controls expression of FLC by creating a repressive chromatin configuration of the locus.This work was supported by Ministerio de Educacin y Ciencia (BFU2008-00238, CSD2006-00049), and by Junta de Andaluca (P06-CVI-01400) to J.C.R. and by the National Institutes of Health (grant no. 1R01GM079525), and the National Science Foundation (grant no. 0446440) to R.A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1

    Get PDF
    Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.Instituto de Salud Carlos III CD09/0007, PI18/01556, PI18/01557Ministerio de Educación, Cultura y Deporte FPU14/02115, AP2010‐1598, FPU16/02050, FPU15/02898, BES-2010-033886Ministerio de Economia, Industria y Competitividad SAF2012‐33816, SAF2015‐64111‐R, SAF2017-90794-REDT, PIE13/0004, BFU2016-76872-R, BES-2011-047721Junta de Andalucía P12‐CTS‐2138, P12‐CTS‐2232, UMA18-FEDERJA-211, US‐126273

    Macroscopic superposition states of ultracold bosons in a double-well potential

    Full text link
    We present a thorough description of the physical regimes for ultracold bosons in double wells, with special attention paid to macroscopic superpositions (MSs). We use a generalization of the Lipkin-Meshkov-Glick Hamiltonian of up to eight single particle modes to study these MSs, solving the Hamiltonian with a combination of numerical exact diagonalization and high-order perturbation theory. The MS is between left and right potential wells; the extreme case with all atoms simultaneously located in both wells and in only two modes is the famous NOON state, but our approach encompasses much more general MSs. Use of more single particle modes brings dimensionality into the problem, allows us to set hard limits on the use of the original two-mode LMG model commonly treated in the literature, and also introduces a new mixed Josephson-Fock regime. Higher modes introduce angular degrees of freedom and MS states with different angular properties.Comment: 15 pages, 8 figures, 1 table. Mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon
    corecore