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Abstract
Weanalyze the role of impurities in the fractional quantumHall effect using a highly controllable
systemof ultracold atoms.We investigate themechanism responsible for the formation of plateaux in
the resistivity/conductivity as a function of the appliedmagnetic field in the lowest Landau level
regime. To this aim,we consider an impurity immersed in a small cloud of an ultracold quantumBose
gas subjected to an artificialmagnetic field.We consider scenarios corresponding to experimentally
realistic systemswith gauge fields induced by rotation of the trapping parabolic potential. Systems of
this kind are adequate to simulate quantumHall effects in ultracold atom setups.We use exact
diagonalization for few atoms and to emulate transport equations, we analyze the time evolution of
the systemunder a periodic perturbation.We provide a theoretical proposal to detect the up-to-now
elusive presence of strongly correlated states related to fractional filling factors in the context of
ultracold atoms.We analyze the conditions underwhich these strongly correlated states are associated
with the presence of the resistivity/conductivity plateaux. Ourmain result is the presence of a plateau
in a region, where the transfer between localized and non-localized particles takes place, as a necessary
condition tomaintain a constant value of the resistivity/conductivity as themagneticfield increases.

1. Introduction

Transport properties provide some of themost fundamental characteristics of condensedmatter systems (see
[1, 2]). In contrast, in physics of ultracold atomic andmolecular gases [3], the studies of transport, unlike those
performed in solid state settings, are hindered by the difficulty of having continuous and durable flowof atoms;
for this reason they have been very limited so far. Among others they included: the investigations of Bloch
oscillations (from the early studies with cold atoms [4] to the recent experiments with disordered gases [5]), the
extensive work on transport and diffusion in disordered gases [6–10], and the very recent experiments on
quantized conductivity [11–15].

Paradigmatic systems, inwhich the transport properties play an essential role, are the systems that exhibit
integer or fractional quantumHall effects (IQHEor FQHE) [16, 17]. The quantumHall effect consists in fact in
quantisation of the transverse conductance for electronic current in the condensedmatter systems, and for atomic
flow for neutral atomic gases. Although in the IQHE the interactions play an irrelevant role, the underlying
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physics, even if well understood, is highly non-trivial. The case of the FQHE,where the interaction has a crucial
contribution, ismore complex and not yet completely understood. For these reasons systems that exhibit FQHE
belong to themost popular systems of strongly correlated particles that still await conclusive explanations and
‘call for’ quantum simulations, for instancewith ultracold atoms or ions [3].

In order to quantum simulateQHE it is necessary to generate strong artificialmagnetic (gauge)fields. In the
context of ultracold atomic systems, first realizations of artificial gauge (magnetic)fields were considered in
rotating traps [18–24]. Quite soon it was realized, however, that themost promisingway to generate the artificial
gaugefields is to use the laser induced fields—thesemethods are described in detail in several reviews [3, 25–27],
while for the recent spectacular experiments the reader should consult [28–31]. Variousmethods of detection of
theHall effect have been proposed and realized in thementioned experiments (see [32, 33]). In particular, it was
shown [34] how the quantizedHall conductance can bemeasured fromdensity profiles using the Strěda formula
[35]. In this paper we propose tomeasure the quantizedHall conductance directly as a transport property and
suggest to use the response of the considered system to the time dependent perturbation.

Beforewe turn to atomic systems, it is instructive to review briefly the phenomenology of electronic systems
[16, 36]. Hall effect appears already in classical physics, where the transverse resistivity is proportional to the
magnetic fieldB. The transverse conductivitymay be expressed by the famous expression

e

h
, 1yx

2

( )s n=

where nh eBn = is the filling factor, and n is the electron areal density. Amazingly the same formula holds in
the quantummechanical case, being the consequence of theGalilean invariance [36].

The explanation of plateaux corresponding to integer filling factors observed in experiments requires thus
additional arguments. These arguments are based on the fact that in typical experimental situationsGalilean
invariance breaks down due to the presence of random impurities. Accordingly, the spectrumof (non-
interacting) 2D electron gas in themagnetic field does not exhibit discrete Landau levels only. Close to the
Landau levels in fact the spectrum consists of a band corresponding to extended (conducting) states. Far from
the Landau level energy the spectrum corresponds to states localized due to the presence of impurities via the
mechanismof Anderson localization [37]. Obviously, localized states do not contribute to the conductivity, and
thus one can expect that when Fermi energy decreases between two subsequent Landau levels including less and
less localized states in the Fermi sea, keeping the condition of fully occupied Landau levels, the conductivity does

not change i.e. it exhibits a plateau.Why has the plateau the value exactly equal to
e

h
yx

2

s n= with ν integer, and

why is this result so robust was a rather surprising fact in the beginning of the 1980s. It wasfirst explained by the
famous Laughlin argument [38]. He demonstrated the quantization of theHall resistivity analyzing an imaginary
experiment topologically equivalent to a ‘Corbino-type’ sample of a disk shapewith a central hole [16].
Laughlin’s arguments were then generalized byHalperin [39] andBüttiker [40] to the strip geometry, employing
the properties of the edge states and edge currents. Contemporary understanding of the robustness of the IQHE
is based on the topological nature of integer transverse conductivity, first related toChern numbers byNiu
et al [41] (see also [42] and references there in).

The IQHE requires high, but not extensively high values of themagnetic field, inwhich several Landau levels
are involved. The quantization of the transverse conductivity corresponding to integer values of the filling factor,
is of course due to the quantization of the Landau levels. Still, the step-wise behavior of conductivity in the 2D
electron gas originates from the influence of impurities [43].

In contrast, in the case of strongmagnetic fields in the lowest Landau level regime, the non-interacting
particle approach cannot be applied. One can think of the composite-fermion picture inwhich the fractional
filling factor for electrons is transformed into integer filling factors for new quasiparticles: electrons dressedwith
magnetic quantumfluxes fill completely several Landau levels [44, 45]. However, for this equivalent systemof
composite fermions in the IQH regime, the role of impurities is strongly combinedwith effects of interaction.
One can think that the impurities play the role of a reservoir of particles trapping or releasing particles as the
Fermi levelmoves across the localized states as themagnetic field changes. Notice that the Fermi energy
decreases to lower values as the realmagnetic fieldB grows [16]. As a consequence, for some intervals ofB the
density of the extended electrons, those that contribute to the current, increases due to the transfer of electrons
from impurities to the Landau levels. This effect compensates the increase ofB, providing the appearance of a
plateau in the resistivity/conductivity:

B n , 2yx e ( )r ~

where ne is the density of the extended part of the system. Itmust be stressed that the presence of impurities
plays the same role as that of the edge infinite systems. Themain ingredient is the presence of a scalar potential
locally linear in x that traps the particles [16].

2
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The size of the plateaux depends thus on the number and the properties of the impurities. Itmust be realized
that these plateaux appear on special values of yxr that localize states of significant interest, with fractional filling
factors.Without impurities these values of the resistivity would not be visible.

Turning back to the atomic gases, to simulate the similar phenomenology, wemust somehowobtain
localized andnon-localized particles and look for regimeswhere transfer between them is possible. Since in
ultracold atom setups one has the possibility to engineer controllable impurities, such systems provide an ideal
tool to understand the role of impurities in the formation of the plateaux and their interplay with interactions in
the FQHE. In our numerical simulations, the possibility of distinguishing localized and non-localized particles
was achieved in the followingway: the diagonalization of the one-body densitymatrix provides uswith the
natural orbitals. Importantly, in all the analyzed cases, one of the orbitals ismostly concentrated around the
impurity. In contrast, the other ones remain extended. Thereforewe can distinguish between these two parts.
Intervals of the artificialmagnetic fieldB*, where the occupations of the natural orbits have a significant
variationwithB* turned out to be crucial to identify the regionswhere transfer is possible and plateaux are
expected.

Recently we have used state-of-art exact diagonalization to study properties of small clouds of atoms in a trap
under influence of strong artificial gaugefields (see [22, 23, 46–51]). In this paper, we expand the previous
studies [52]. Ourmain goal is to learn about the relationship between the presence of impurities and the
appearance of plateaux in theHall resistivity as a function of themagnetic field in the fractional quantumHall
regime. This regime has not been achieved experimentally with atoms and our preliminary analysis is intended
to predict possible future results.We use here the exact diagonalizationmethod to calculate the ground state
(GS) and its excitations in the absence/presence of an impurity.We analyze the time evolution (TE) of the
system submitted to a periodic perturbationwhich represents an applied external electric field to simulate the
transport equation

j t E t , 3y yx x( ) ( ) ( )s=

where jy is the equivalent to the electronic current for atoms and yxs is the transverse conductivity. In the
appendixwe compare the results with those obtained using the linear response theory (LRT) approximation and
conclude that, aside some limitations associatedwith resonances, the comparison is extremely good.

Ourmain result is the appearance of a plateau close to theGS transition that takes placewhen the angular
momentum changes from L N N 2( )= - to L N N 1 .( )= - The change of angularmomentummodifies the
resistivity and produces a bumppartially overlappedwith the plateau. An important outcome is that the
presence of an impurity is a necessary condition to generate plateaux.With no impurities the change of the
occupations is abrupt and the transfer process is not possible.

The numerical complexity of the problem allows us to study only rather small systems up toN=4 atoms. In
effect the predicted plateau is small.We expect, however, that for large systems (N= 100–1000) the natural
increase of the number of impurities and thus the increase of the localized part, would guarantee the visibility of
the plateau.On the other hand, the robustness comes from the topological nature of the conductivity, as
previouslymentioned.

This paper is organized as follows: in section 2we present themodel for the basicHamiltonianH0 to
calculate the full spectrumof the unperturbed system. From its GS, we obtain the natural orbitals and their
occupations. In addition, we show the explicit expression of the periodic perturbation and the expression for the
equivalent periodic trapping potential in the full Hamiltonian. In section 3, we analyze the TE of the expected
value of the current operator jy and identify the conductivity. Themain results are shown. In section 4we define
a kind of restricted operators that emphasize the presence of the plateau and discuss about itsmeaning. Finally
section 5 contains the summary and discussion. The appendix develops the LRT and shows some comparisons
with the TE, as well as some limitations inherently relatedwith themethod.

2. Themodel

Weconsider a systemofN one-component bosonic atoms ofmassM confined on theXY-plane. The cloud is
trapped by a rotating parabolic potential of frequency ŵ and rotationΩ along theZ-axis, rotationwhich in an
effective way generates an artificialmagneticfield denoted by B .* In the rotating reference frame the basic
Hamiltonian (not including the perturbation) reads

H H H , 40 sp intˆ ˆ ˆ ( )= +

3
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where the single particle part is given by

H
M

M
W

p
r z L

2 2
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which can be rewritten in an equivalent way as
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B

y A
B

x
2

,
2

. 7x y
ˆ ˆ ˆ ˆ ( )* *

= = -

The particular selection of the symmetric gauge has been done in the definition of A,ˆ with

B M2 8( )* = W

being themodulus of a constant artificialmagnetic field directed downward along theZ-direction
and x yr , .( )º

The potentialW W
j

K
j1

ˆ ˆå= =
is due to the presence ofK impurities, which aremodeled byDirac delta

functions

W
M

r a . 9j j
i

N

i j

2

1

2 ( )ˆ ˆ ( )( ) åg d= - -
=

The dimensionless parameters jg measure the strength of the impurities and aj localize themon theXY plane.

The term Ŵ breaks the circular symmetry except for the case of a single impurity localized exactly at the center.
Wemodel the atomic interaction by a 2D contact potential characterized by

H
g

M
r r , 10

i j
i jint

2
2 ( )ˆ ˆ ˆ ( )( )

åd= -
<

where g a8 zp l= is the dimensionless coupling, a is the 3D scattering length and M .z zl w= We
assume ,zw the trap frequency in theZ-direction,much larger than any of the energy scales involved, in such a
way that only the lowest level is occupied. Therefore, the dynamic is frozen in theZ-axis and the system can be
considered two-dimensional.

Without impurities, the solutions of the single particle part produce the Landau level structure [45]. The
energy levels are separated by .( ) w + W^ Weassume thatB* is large enough to consider just the lowest Landau
level (LLL) regimewhere the appearance of energy gaps has a completely different origin as those in the IQH,
where several Landau levels are implied.Within this regime, the kinetic part of theHamiltonian reads

H L N . 11kin ( )ˆ ˆ ˆ ( ) w w= - W +^ ^

The single particle solutions withwell defined angularmomentumm are the Fock–Darwin (FD) functions,

given by r
m

r,
e

e .m

m
r m

i
22( )

!
f q

p
=

q
-

Once the spectrumof thewhole system is obtained for a given number of particlesN and forfixed values of
a, ,j jgW and g ,we proceed to distinguish the eigenfunctions of the one-body densitymatrix according to

their localization. To this end, we diagonalize the one-body densitymatrix given by

r r r r, , 121 ( ) ( )ˆ ˆ ( ) ˆ ( )( ) †r ¢ = Y Y ¢

where the expected value is calculated at theGS and rˆ ( )Y is thefield operator. Its eigenfunctions are the natural
orbitals ,iy linear combinations of the FD functions, and the eigenvalues are their occupations
n ,i i l1 ,.., 1m= + (lm varied until convergence).

Fromnowon, we use the complete set of natural orbitals as a base to represent functions and operators in the
second quantized formalism.Next we analyze the density distribution of each orbital and look for their
localization around the impurities. For N 3= and one impurity at a 1, 01 ( )= (see equation (9)—lengths are
in units of theXY harmonic oscillator length), the result is that the orbital 2y out offive orbitals with non-
negligible occupation (the orbitals are ordered by decreasing occupations), presents a density distribution
mainly localized at the impurity, as is shown infigure 1 (upper row). Similar results are obtained forN=4

4
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where themost localized orbital is 1y (lower row). This localization of some orbitals allows us to distinguish
between localized and extended states.

Finally, we consider that the cloud of atoms is dynamically forced by an oscillating term,while the impurity
remains attached to afixed position. To be explicit, the full Hamiltonian of the system is

H t H H t 130 pertˆ ( ) ˆ ˆ ( ) ( )= +

with

H t x t t f t xsin , 14
i

N

i
i

N

ipert
1 1

ˆ ( ) ˆ ( ) ( ) ( ) ˆ ( )
⎛
⎝⎜

⎞
⎠⎟å ål x w= - º

= =

whereλ gives the intensity of the perturbation, whichwe assume small. The explicit formof t( )x is

t t1 exp , 152( ) ( ) ( )⎡⎣ ⎤⎦x s= - -

whereσ determines the velocity of the evolution. The perturbation is switched on at t=0 and, as t increases, the
stationary regime is achievedwhen the amplitude of the oscillations can be considered constant. Fromnowon

we consider M 1 2= and 1 = and choose
M

2 ,


l
w

w= =^
^

^ 2ŵ and 2ŵ as units of length,

energy, and frequency, respectively.With our unit of length, 2.w =^ In the simulation, the sequence
t tsin( ) ( )lx w- is identifiedwith the electric field Ex(t) in the transport equation. Namely, for a single particle

and a single impurity (see equation (6)), including the perturbationwe have

H f tp A x y x r a . 16i
i i

i i
2 2 2 2 2

1
2

1( ) ( )( ) ( )ˆ ˆ ˆ ˆ ˆ ( ) ˆ ˆ ( )( )w g d= + + - W + + - -^

The effective trapping potential can be re-written as an oscillating trap

f t
x y

2
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3. Time evolution

Let us show that thismodel allows us to identify the transverse conductivity from the transport equation (3). For
that, we need to analyze the TE of the expected value of the current operator j ,ŷ which is given by [53]

j
M

p Ar r p A r r r r r
1

2
. 18y y y y y{ }ˆ ( ) ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ( ) ( )† †⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦Y= Y + - - Y Y

By calculating jy t
ˆá ñ once the stationary regime is reached and in the case that we obtain a linear behavior inλ (see

equation (14)), we are able to obtain the transverse conductivity from the transport equation (3) due to the
identificationwe have done between the perturbation and the electric potential associatedwith a constant
electric field.

Figure 1.Density of thefirstfive natural orbitals, the only ones with non-negligible occupations forN=3 (upper row) and forN=4
(lower row). ForN=3, the second one, panel (b), is localized close to the impurity siting at a 1, 0 .1 ( )= In contrast, forN=4, the
natural orbital which is localized around the impurity is the first one (panel (f)). The occupations are: 0.92, 0.74, 0.57, 0.42 and 0.34
for N 3= and 1.30, 0.83, 0.68, 0.52, 0.41 and 0.26 forN=4, respectively. In both cases we take Ng 6 ,= 0.1 ,1g = 1.95.W =

5
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To obtain t j ty( )∣ ˆ ∣ ( )áY Y ñwe solve the Schrödinger equation t H t ti t ( ) ˆ ( ) ( )¶ Y = Y with the time-

dependentHamiltonian given by equation (13).We consider thewave function as t c t
n

n
n n1

d( ) ( )åY = F=
where the set ,n{ }F n n1, , d= ¼ is a basis of theHilbert space of dimension nd, given by themany-bodywave
functionswhich solveHamiltonianH0 with eigenvalues E .n{ } Then, we obtain the systemof equations:

c t c t E t t c t n x mi sin 19t n n n
m

n

m
1

d

( ) ( ) ( ) ( ) ( ) ∣ ˆ ∣ ( )ål x w¶ = - < >
=

with theGS 1( )F as the initial condition, i.e., t 0 .1( )Y = = F We solve these equations using the Runge–Kutta
fourth-order algorithm.Oncewe obtain the transverse conductivity ,yxs we can obtain the resistivity from

, 20yx
yx

yx xx
2 2

( )r
s

s s
= -

+

where xxs is obtained from j E .x xx xs=
Let us note here that our evolution is rather adiabatic. Indeed, we have checked that the overlap

tGS∣ ∣ ( ) ∣áY Y ñ remains nearly one at all times. E.g., we numerically obtain that, for 10s = (see equation (15)),

t 0.97 21cGS
2( ) ( )Y Y =

where GSY is the ground state of H t H H tc c0 pert
ˆ ( ) ˆ ˆ ( )= + and tc( )Y is the solution of the Schrödinger equation

at tc (chosen such that tsin 1c( )w = ).
In agreement with our previous discussion, to generate a plateauwemust look for an interval ofΩ, where the

occupation of the localized orbital changes. To this end, we analyze the orbital occupations as a function ofΩ
(see figure 2 (a)) and focus on the region fulfilling two requirements: on one hand, the occupation of the
localized orbital decreases asB* increases producing an increase of the extended part and, on the other hand, this
region lies within the largest possible value of Lá ñwhere plateaux are expected. In otherwords, there are two kind
of intervals: (i) intervals where the localized density isflat giving linear dependence of yxr withB*where
quantumand classical behavior coincide [16]; and (ii) intervals where a plateau occurs and then, the change of
B*drags dr (the extended density), and yxr remains constant. Notice that thismeans that for our analyzed small

samples we expect only one plateau along thewhole interval of the largest value of L .á ñ Figure 2 (b) is a zoomof
the interesting region.

Ourmain result is represented infigure 3, wherewe show the variation of theHall resistivity as a function of
Ω for some values of the position of the impurity, whichwe always assume to be in the x-axis, that is

xa , 0 .1 0( )= Infigure 3 (a)we show theHall resistivity for three exemplary values of the position of the impurity
for thewhole range ofΩ investigated.We observe that some structure, different from the linear behavior, occurs
just in the region shown infigure 2 (b). This structure begins at about 1.963,W = that is just after 1.9629,cW =
where the jump of the angularmomentum from L=8 to 12 takes place. Infigure 3 (b)we show a zoomof the
relevant part of the figure, wherewe confirm that this structure corresponds to the expected plateau. The total
jump in the resistivity is for x0=0.7 approximately from 270yxr = to 291, which is about a 7%of the total
value of the resistivity.We also see that this plateau is softenwhen the position of the impurity is changed.

Figure 2. (a)Occupations of the first two orbitals as a function ofΩ. There is a correlation between the steps of the occupations and the
jumps of Lá ñ in a nearly symmetric system. ForN=4 themagic numbers of L in the symmetric case are 0 4 8 12.- - - The
vertical lines at 1.765, 1.920 and 1.959 mark the position of the jumps of L for the symmetric case.We considered
N 4,= Ng 6,= 1.1w = 0.11g = and a 1, 0 .1 ( )= (b)Azoom in the interesting region (which is highlightedwith a small
rectangle in (a)). The localized orbital forN=4 is .1y

6
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4. Emphasizing the plateau structure

Up to this point, it has been proved that themost successful way to generate a plateau is by the localization of a
very special interval ofΩwhere the localized density decreases (see figure 2).Within this interval, there is a
simultaneous change of B* and .dr The necessary condition to produce this effect is under the requirement
that for each B*, its ‘dancing pair’, dr , is well defined. To bemore precise: for each B ,* the deduction of yxr

requires several steps, some of them are operations like q j p
qp y∣ ˆ ∣å < >or q x p

qp
∣ ˆ ∣å < >where p∣ > and q∣ >

are Fock states: n n n, , ,l1 2 m
∣ ¼ ñ ni being the orbital occupations. In order to have afixed value of dr the operators

jŷ and x̂ must not do significant changes on the localized part.

To be sure that this phenomenology is well captured by ourmodel, we forced themechanism in an
alternative calculation defining a kind of restricted operators jỹ and x̃ that fulfill the previous requirement: they

do not change the localized part of the density.We consider in the summations only those elements that couple
the vectors with the same occupation of the localized orbital (which is n2 forN= 3 or n1 forN= 4). The result
shown infigure 4 confirms our intuition. Figure 4must be comparedwithfigure 3(a). The improvement of the
visualization of the plateau for some values of x0 is evident.

Within the intervals of linear dependence of yxr withB*where quantumand classical behavior coincide [16],
the use of the restricted operators is irrelevant as the occupation of the localized orbital is flat.

Figure 3. (a)Hall resistivity yxr as a function ofΩ.WeusedN=4, Ng 6,= 1.1,w = 0.1,1g = 0.001.l = Weconsidered an impurity
at theX-axis at different positions, that is, xa , 0 .1 0( )= The vertical dashed linesmark the interval considered in panel (b), where we
show a zoomof the area of interest. The vertical dotted line at 1.962 in panel (b)marks the approximate place of the jump in the
angularmomentum from8 to 12.We also include two additional positions of the impurity to show that the effect depends on the
position of the impurity.

Figure 4.Hall resistivity yxr as a function ofΩwhen restricting both the current and the position operators (see text). Same parameters
as infigure 3. The presence of a plateau is very evident when using the restricted operators. The plateau begins at about 1.963W = just
after 1.962cW = where the jumpof the angularmomentum from L=8 to 12 approximately takes place (markedwith a vertical gray
dotted line).
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5. Summary anddiscussion

Within the framework of quantum simulation, we considered awell known effect for electrons under strong
magnetic fields. A great amount of experimental data has been accumulated in solid state devices [16] and the
most appealing feature lies in the universality of the results. The plateaux of theHall resistivity as a function of
the (strong)magnetic field, obtained for very clean samples yet containing some disorder, signal the presence of
peculiar states withwell defined fractional filling factors. The values of yxr on the plateaux depend only on

universal constants (ÿ and e). Up to now,most of these special states still require a challenging explanation not
always complete. The translation of this physics tofinite systems of atoms and its interpretation is not always
easy. As a first attempt, our goal is to understand themechanism in small samples and try to extrapolate the
results to larger systems. Notwithstanding the fact that we can only tackle with small number of atoms, our
results can be experimentally tested, given the ability of the new technologies to deal with very small samples and
to engineer tunable impurities.

Summarizing, we have obtained a plateau in theHall resistivity yxr W following the expected line of search

suggested by the knownmechanism in the case of electrons and realfields in the fractional quantumHall regime.
The appearance of aflat region on yxr reveals the essence of our goal, namely that there is a transfer of atoms

from localized to non-localized atoms asB* increases.We proved that it is necessary to have part of the system
localized around an impurity. The transfer from localized to extended states allows the simultaneous variation of
B*and dr producing a constant value of Byx d*r r~ along certain interval ofΩ. Particle interaction and the

presence of impurities are crucial ingredients, at oddswith the case of the integer quantumHall effect. The
improvement of the visualization of the plateau is achieved by forcing the complete exclusion of the localized
part, using a restricted version of the operators for the current and the perturbation.

So farwe have used the expressions involved in the transport equation, valid formacroscopic systemswith
uniformdensity. Namely, the resistivity (or the conductivity) have no space dependence, and the known
experimental behavior (see [54]) is well captured by the linearity of yxr againstB* (aside plateau structures or
phase transitions of theGS). In contrast, our system isfinite and themean density decreases withB*producing a
nonlinear behavior of yxr with B ,* which is afinite size effect.

For systemswith larger number of particles (several hundreds or thousands of atoms), the presence of
impurities represents a small perturbation in theHamiltonian. Therefore, for large systemswith impurities
randomly distributed, we do not expect that the plateau depends on the position of the impurities. This is not the
case for systemswith a small number of atoms, as in this case the presence of the impurities cannot be considered
a small perturbation and the plateau depends on the position of the impurity (see figure 3). Indeed, the ground
state is stronglymodified and so is ,yxr as shown infigure 4, with the bumpbefore the plateau infigure 4 being

due to the presence of the phase transition taking place as the angularmomentum jumps from L N N 2( )= -
to L N N 1 .( )= - The change of angularmomentummodifies the resistivity and produces a bumppartially
overlappedwith the plateau.
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Appendix. Linear response theory

Following the standard protocol to analyze the linear response of a system [55], given an operator Gf tˆ ( )l-
simulating a small perturbation (being Ĝ time-independent) and an operator F̂ for ameasurable quantity, the
dynamical evolution of the expected value of the observable F̂ is given by
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F F f t , A.1
t 0

ˆ ˆ ( )∣ ( )∣ ( )l c w- =

where ( )c w has been defined as

F G

E E

G F

E E

0 0

i

0 0

i
e . A.2

0 0 0

i( )
ˆ ˆ ˆ ˆ

∣ ( )∣ ( )( )
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥åc w

n n

w h

n n

w h
c w=

- + +
+

- - -
º

n n n

d w

¹

The sum is extended to all excitations and η is a small quantity.
To obtain information about theHall response and simulate equation (3), connectingwith section 2, we

make the following choice

G x , A.3
i

N

i
1

ˆ ˆ ( )å=
=

F j A.4y
ˆ ˆ ( )=

and

f t t tsin , A.5( ) ( ) ( ) ( )x w=

see equations (14),(15), and(18). If we identify the perturbationwith the electric potential associatedwith a
space independent electric field directed along theX-axis,

E t f t A.6x ( ) ( ) ( )l=

then, from equation (A.1) it is

A.7yx ∣ ( )∣ ( )s c w=

and from equation (20)we obtain the transverse resistivity .yxr The function ( )c w obtained numerically fulfills

the condition ( ) ( )*c w c w= - as well as the Kramers–Kronig relations [55].

Figure A1. (a)Comparison between the calculation of theHall resistivity yxr as a function ofΩwith the complete dynamical evolution
(TE) and the result from the LRT forN=3 and a 1, 0 .1 ( )= Weuse here the restricted operators. Notice that forN=3within this
range ofΩ no plateaux occur. (b) Same forN=4when a plateau is apparent. The figure shows that even in this case, we obtain nearly
the same result.

Figure A2.Hall resistivity yxr as a function ofΩ forN=3 and a 1, 0 .1 ( )= This figure shows a typical resonant structure in the LRT
calculation (upper curve)which disappears in the TE case (lower curve).
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Inwhat followswe consider three significant results. Figure A1 (a) shows a comparison between the two
techniques: TE and the LRT for .yxr W This result indicates that, for awide range ofΩ, theHall effect is a linear
response process. Figure A1(b) is again a verification that theHall response is linear even in the case where the
response implies the formation of a plateau. Finally, we include figure A2 to illustrate possible limitations of the
LRT.Notice that the structure of the upper part of figure A2 is the typical result of a resonance: for a critical value
ofΩ and for some excitations, a denominator in the expression of ( )c w (see equation (A.2)) nearly vanishes. The
system absorbs energy and the behavior is nonlinear. Namely the LRT is not applicable there. It couldwell be a
sign of a peculiar state and itsHall response.However, the lower part of the figure demonstrates that this is not
the case, that it is not relatedwith the phenomenawe are looking for. Notice that figure A1(a) is forN=3, in this
case, Byx *r does not present a plateau, at oddswith the result shown infigure A1(b) forN=4, wherewithin
the same range ofΩ values, a plateau is apparent. Infigure A1 the LRT result does not show the resonance due to
the low resolution.
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[28] BeelerMC,WilliamsRA, Jiménez-Garciá K, LeBlanc L J, Perry AR and Spielman I B 2013Nature 498 201
[29] KennedyC J, SiviloglouGA,MiyakeH, BurtonWCandKetterleW2013Phys. Rev. Lett. 111 225301
[30] AidelsburgerM, AtalaM, LohseM, Barreiro J T, Paredes B andBloch I 2013Phys. Rev. Lett. 111 185301
[31] AidelsburgerM, LohseM, Schweizer C, AtalaM, Barreiro J T,Nascimbène S, CooperNR, Bloch I andGoldmanN2015Nat. Phys. 11

162–6
[32] BermudezA, GoldmanN, KubasiakA, LewensteinMandMartin-DelgadoMA2010New J. Phys. 12 033041
[33] Grass T, Julia-Diaz B and LewensteinM2012Phys. Rev.A 86 053629
[34] Umucalılar RO, ZhaiH andOktelMÖ2008Phys. Rev. Lett. 100 070402
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