22 research outputs found
The immunological synapse: a focal point for endocytosis and exocytosis
There are many different cells in the immune system. To mount an effective immune response, they need to communicate with each other. One way in which this is done is by the formation of immunological synapses between cells. Recent developments show that the immune synapse serves as a focal point for exocytosis and endocytosis, directed by centrosomal docking at the plasma membrane. In this respect, formation of the immunological synapse bears striking similarities to cilia formation and cytokinesis. These intriguing observations suggest that the centrosome may play a conserved role in designating a specialized area of membrane for localized endocytosis and exocytosis
Impact of distinct poxvirus infections on the specificities and functionalities of CD4+ T cell responses.
UNLABELLED: The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (\u3e92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory.
IMPORTANCE: Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses
EvolClustDB: Exploring Eukaryotic Gene Clusters with Evolutionarily Conserved Genomic Neighbourhoods
Conservation of gene neighbourhood over evolutionary distances is generally indicative of shared regulation or functional association among genes. This concept has been broadly exploited in prokaryotes but its use on eukaryotic genomes has been limited to specific functional classes, such as biosynthetic gene clusters. We here used an evolutionary-based gene cluster discovery algorithm (EvolClust) to pre-compute evolutionarily conserved gene neighbourhoods, which can be searched, browsed and downloaded in EvolClustDB. We inferred âŒ35,000 cluster families in 882 different species in genome comparisons of five taxonomically broad clades: Fungi, Plants, Metazoans, Insects and Protists. EvolClustDB allows browsing through the cluster families, as well as searching by protein, species, identifier or sequence. Visualization allows inspecting gene order per species in a phylogenetic context, so that relevant evolutionary events such as gain, loss or transfer, can be inferred. EvolClustDB is freely available, without registration, at http://evolclustdb.org/.Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved
Chromosome-level assembly, annotation and phylome of Pelobates cultripes, the western spadefoot toad
Genomic resources for amphibians are still hugely under-represented in vertebrate genomic research, despite being a group of major interest for ecology, evolution and conservation. Amphibians constitute a highly threatened group of vertebrates, present a vast diversity in reproductive modes, are extremely diverse in morphology, occupy most ecoregions of the world, and present the widest range in genome sizes of any major group of vertebrates. We combined Illumina, Nanopore and Hi-C sequencing technologies to assemble a chromosome-level genome sequence for an anuran with a moderate genome size (assembly span 3.09 Gb); Pelobates cultripes, the western spadefoot toad. The genome has an N50 length of 330 Mb with 98.6% of the total sequence length assembled into 14 super scaffolds, and 87.7% complete BUSCO genes. We use published transcriptomic data to provide annotations, identifying 32,684 protein-coding genes. We also reconstruct the P. cultripes phylome and identify 2,527 gene expansions. We contribute the first draft of the genome of the western spadefoot toad, P. cultripes. This species represents a relatively basal lineage in the anuran tree with an interesting ecology and a high degree of developmental plasticity, and thus is an important resource for amphibian genomic research
Mapping the caribbean scientific collaboration.: Can mobility of researchers help?
International audienceCaribbean communities were mobile long before European colonization and their modes of production and culture were evolving by frequent exchanges among the Caribbean islanders and the Northern coast of South America. However, the region has not fully benefited by the advent of the five Technological Revolutions since 1771. Moreover, in the last two decades of the XX century, the Caribbean Small Islands Developing States (SIDS) were severely affected by the migration of their tertiary educated population towards the developed world, a trend that continues today.Bibliometric approaches have been used to identify not only the brain drain, but also how the contemporary knowledge is created through the international network of scientific collaboration. In this study we use the Scopus bibliographic database to analyse the scientific output and international collaboration of the 13 Caribbean SIDS in the period between 2000 and 2018. The main scientific collaborator of the region as a country is United States, except for Cuba, which is Spain. Consequently, North America, Europe and the Caribbean islands share the higher proportion of co-authoring articles. In terms of institutional representation, the University of West Indies has, in aggregate, the highest output with 11,497 documents from 11 out of 13 SIDS. The main contributor as a country is Jamaica (5018), followed by Trinidad and Tobago. A group of high output academic institutions are University of Havana (4979), followed by Universidad Central de Las Villas, Institute of Tropical Medicine Pedro Kouri and the Centre of Genetic Engineering and Biotechnology, all of them in Cuba and with no significant collaboration with the rest of the region.In previous bibliometric studies we found that the scientists working abroad has the potential to become agents for development of the home country and region, diversifying the scientific collaboration