110 research outputs found

    Invasive Mutualists Erode Native Pollination Webs

    Get PDF
    Plant–animal mutualisms are characterized by weak or asymmetric mutual dependences between interacting species, a feature that could increase community stability. If invasive species integrate into mutualistic webs, they may alter web structure, with consequences for species persistence. However, the effect of alien mutualists on the architecture of plant–pollinator webs remains largely unexplored. We analyzed the extent of mutual dependency between interacting species, as a measure of mutualism strength, and the connectivity of 10 paired plant–pollinator webs, eight from forests of the southern Andes and two from oceanic islands, with different incidences of alien species. Highly invaded webs exhibited weaker mutualism than less-invaded webs. This potential increase in network stability was the result of a disproportionate increase in the importance and participation of alien species in the most asymmetric interactions. The integration of alien mutualists did not alter overall network connectivity, but links were transferred from generalist native species to super-generalist alien species during invasion. Therefore, connectivity among native species declined in highly invaded webs. These modifications in the structure of pollination webs, due to dominance of alien mutualists, can leave many native species subject to novel ecological and evolutionary dynamics

    Marine biotechnology in Brazil : recent developments and its potential for innovation

    Get PDF
    Marine biotechnology is an emerging field in Brazil and includes the exploration of marine microbial products, aquaculture, omics, isolation of biologically active compounds, identification of biosynthetic gene clusters from symbiotic microorganisms, investigation of invertebrate diseases caused by potentially pathogenic marine microbes, and development of antifouling compounds. Furthermore, the field also encompasses description of new biological niches, current threats, preservation strategies as well as its biotechnological potential. Finally, it is important to depict some of the major approaches and tools being employed to such end. To address the challenges of marine biotechnology, the Brazilian government, through the Ministry of Science, Technology, Innovation, and Communication, has established the National Research Network in Marine Biotechnology (BiotecMar) (www.biotecmar.sage.coppe.ufrj.br). Its main objective is to harness marine biodiversity and develop the marine bioeconomy through innovative research

    An extensive reef system at the Amazon River mouth

    Get PDF
    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 x 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (similar to 9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenadoria de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERS)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)BrasoilMCTIBrazilian NavyU.S. NSFGordon and Betty Moore Foundation (GBMF)Univ Fed Rio de Janeiro UFRJ, Inst Biol, BR-21941599 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, COPPE, Inst Alberto Luiz Coimbra Posgrad & Pesquisa Engn, Lab Sistemas Avancados Gestao Prod, BR-21941972 Rio de Janeiro, RJ, BrazilInst Pesquisas Jardim Bot Rio de Janeiro, BR-22460030 Rio De Janeiro, RJ, BrazilUniv Sao Paulo, Inst Oceanog, BR-05508120 Sao Paulo, SP, BrazilUniv Fed Espirito Santo, Dept Oceanog, BR-29199970 Vitoria, ES, BrazilUniv Estadual Norte Fluminense, Lab Ciencias Ambientais, Ctr Biociencias & Biotecnol, BR-28013602 Campos Dos Goytacazes, RJ, BrazilUniv Fed Fluminense, Inst Geociencias, BR-24210346 Niteroi, RJ, BrazilUniv Fed Fluminense, Inst Biol, BR-24210130 Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, Museo Nacl, BR-20940040 Rio De Janeiro, RJ, BrazilFed Univ Para, Inst Estudos Costeiros, BR-68600000 Braganca, PA, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, BR-11070100 Santos, SP, BrazilUniv Fed Pernambuco, Dept Oceanog, BR-50670901 Recife, PE, BrazilUniv Georgia, Dept Marine Sci, Athens, GA 30602 USAUniv Fed Paraiba, BR-58297000 Rio Tinto, PB, BrazilUniv Estadual Santa Cruz, Dept Ciencias Biol, BR-45650000 Ilheus, BA, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, BR-11070100 Santos, SP, BrazilU.S. NSF: OCE-0934095GBMF: 2293GBMF: 2928Web of Scienc

    Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    Get PDF
    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes
    corecore