679 research outputs found

    Propagation on networks: an exact alternative perspective

    Get PDF
    By generating the specifics of a network structure only when needed (on-the-fly), we derive a simple stochastic process that exactly models the time evolution of susceptible-infectious dynamics on finite-size networks. The small number of dynamical variables of this birth-death Markov process greatly simplifies analytical calculations. We show how a dual analytical description, treating large scale epidemics with a Gaussian approximations and small outbreaks with a branching process, provides an accurate approximation of the distribution even for rather small networks. The approach also offers important computational advantages and generalizes to a vast class of systems.Comment: 8 pages, 4 figure

    Describing ancient horizontal gene transfers at the nucleotide and gene levels by comparative pathogenicity island genometrics

    Get PDF
    Motivation: Lateral gene transfer is a major mechanism contributing to bacterial genome dynamics and pathovar emergence via pathogenicity island (PAI) spreading. However, since few of these genomic exchanges are experimentally reproducible, it is difficult to establish evolutionary scenarios for the successive PAI transmissions between bacterial genera. Methods initially developed at the gene and/or nucleotide level for genomics, i.e. comparisons of concatenated sequences, ortholog frequency, gene order or dinucleotide usage, were combined and applied here to homologous PAIs: we call this approach comparative PAI genometrics. Results: YAPI, a Yersinia PAI, and related islands were compared with measure evolutionary relationships between related modules. Through use of our genometric approach designed for tracking codon usage adaptation and gene phylogeny, an ancient inter-genus PAI transfer was oriented for the first time by characterizing the genomic environment in which the ancestral island emerged and its subsequent transfers to other bacterial genera. Contact: [email protected] Supplementary informatio

    Is Gravitational Lensing by Intercluster Filaments Always Negligible?

    Full text link
    Intercluster filaments negligibly contribute to the weak lensing signal in general relativity (GR), γN104103\gamma_{N}\sim 10^{-4}-10^{-3}. In the context of relativistic modified Newtonian dynamics (MOND) introduced by Bekenstein, however, a single filament inclined by 45\approx 45^\circ from the line of sight can cause substantial distortion of background sources pointing towards the filament's axis (κ=γ=(1A1)/20.01\kappa=\gamma=(1-A^{-1})/2\sim 0.01); this is rigorous for infinitely long uniform filaments, but also qualitatively true for short filaments (30\sim 30Mpc), and even in regions where the projected matter density of the filament is equal to zero. Since galaxies and galaxy clusters are generally embedded in filaments or are projected on such structures, this contribution complicates the interpretation of the weak lensing shear map in the context of MOND. While our analysis is of mainly theoretical interest providing order-of-magnitude estimates only, it seems safe to conclude that when modeling systems with anomalous weak lensing signals, e.g. the "bullet cluster" of Clowe et al., the "cosmic train wreck" of Abell 520 from Mahdavi et al., and the "dark clusters" of Erben et al., filamentary structures might contribute in a significant and likely complex fashion. On the other hand, our predictions of a (conceptual) difference in the weak lensing signal could, in principle, be used to falsify MOND/TeVeS and its variations.Comment: 11 pages, 6 figures, published versio

    Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    Get PDF
    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version submitted on November 8 2006. Published on February 14 200

    Adsorption and reaction of CO on (Pd–)Al2O3 and (Pd–)ZrO2: vibrational spectroscopy of carbonate formation

    Get PDF
    γ-Alumina is widely used as an oxide support in catalysis, and palladium nanoparticles supported by alumina represent one of the most frequently used dispersed metals. The surface sites of the catalysts are often probed via FTIR spectroscopy upon CO adsorption, which may result in the formation of surface carbonate species. We have examined this process in detail utilizing FTIR to monitor carbonate formation on γ-alumina and zirconia upon exposure to isotopically labelled and unlabelled CO and CO2. The same was carried out for well-defined Pd nanoparticles supported on Al2O3 or ZrO2. A water gas shift reaction of CO with surface hydroxyls was detected, which requires surface defect sites and adjacent OH groups. Furthermore, we have studied the effect of Cl synthesis residues, leading to strongly reduced carbonate formation and changes in the OH region (isolated OH groups were partly replaced or were even absent). To corroborate this finding, samples were deliberately poisoned with Cl to an extent comparable to that of synthesis residues, as confirmed by Auger electron spectroscopy. For catalysts prepared from Cl-containing precursors a new CO band at 2164 cm−1 was observed in the carbonyl region, which was ascribed to Pd interacting with Cl. Finally, the FTIR measurements were complemented by quantification of the amount of carbonates formed via chemisorption, which provides a tool to determine the concentration of reactive defect sites on the alumina surface

    Structural preferential attachment: Network organization beyond the link

    Get PDF
    We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.Comment: 4 pages, 3 figures, 1 tabl

    Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis

    Get PDF
    An adaptive network model using SIS epidemic propagation with link-type-dependent link activation and deletion is considered. Bifurcation analysis of the pairwise ODE approximation and the network-based stochastic simulation is carried out, showing that three typical behaviours may occur; namely, oscillations can be observed besides disease-free or endemic steady states. The oscillatory behaviour in the stochastic simulations is studied using Fourier analysis, as well as through analysing the exact master equations of the stochastic model. By going beyond simply comparing simulation results to mean-field models, our approach yields deeper insights into the observed phenomena and help better understand and map out the limitations of mean-field models

    An order-to-disorder structural switch activates the FoxM1 transcription factor

    Get PDF
    Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures

    On negative higher-order Kerr effect and filamentation

    Full text link
    As a contribution to the ongoing controversy about the role of higher-order Kerr effect (HOKE) in laser filamentation, we first provide thorough details about the protocol that has been employed to infer the HOKE indices from the experiment. Next, we discuss potential sources of artifact in the experimental measurements of these terms and show that neither the value of the observed birefringence, nor its inversion, nor the intensity at which it is observed, appear to be flawed. Furthermore, we argue that, independently on our values, the principle of including HOKE is straightforward. Due to the different temporal and spectral dynamics, the respective efficiency of defocusing by the plasma and by the HOKE is expected to depend substantially on both incident wavelength and pulse duration. The discussion should therefore focus on defining the conditions where each filamentation regime dominates.Comment: 22 pages, 11 figures. Submitted to Laser physics as proceedings of the Laser Physics 2010 conferenc

    Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents

    Get PDF
    In the current work we present some pharmacological characteristics of ten new analogues of bradykinin (Arg–Pro–Pro–Gly–Phe–Ser–Pro–Phe–Arg) modified in the N-terminal part of the molecule with a variety of acyl substituents. Of the many acylating agents used previously with B2 receptor antagonists, the following residues were chosen: 1-adamantaneacetic acid (Aaa), 1-adamantanecarboxylic acid (Aca), 4-tert-butylbenzoic acid (t-Bba), 4-aminobenzoic acid (Aba), 12-aminododecanoic acid (Adc), succinic acid (Sua), 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 3-(4-hydroxyphenyl)propionic acid and 6-hydroxy-2-naphthoic acid. Biological activity of the compounds was assessed in the in vivo rat blood pressure test and the in vitro rat uterus test. Surprisingly, N-terminal substitution of the bradykinin peptide chain itself with aforementioned groups resulted in antagonists of bradykinin in the pressor test and suppressed agonistic potency in the uterotonic test. These interesting findings need further studies as they can be helpful for designing more potent B2 receptor blockers
    corecore