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Propagation on networks: An exact alternative perspective
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By generating the specifics of a network structure only when needed (on-the-fly), we derive a simple stochastic
process that exactly models the time evolution of susceptible-infectious dynamics on finite-size networks. The
small number of dynamical variables of this birth-death Markov process greatly simplifies analytical calculations.
We show how a dual analytical description, treating large scale epidemics with a Gaussian approximation and
small outbreaks with a branching process, provides an accurate approximation of the distribution even for rather
small networks. The approach also offers important computational advantages and generalizes to a vast class of
systems.
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I. INTRODUCTION

Real-world systems are often composed of numerous
interacting elements. Complex network models prove to be
valuable tools for systems where interactions are neither
completely random nor completely regular [1,2]. Among
these systems, an important subclass concerns the propagation
of something through interactions among the constituting
elements. Examples include spreading of infectious diseases
in populations [3–8] as well as propagation of information
[9–11], rumors [12–14], or viral marketing [15,16] on social
networks. We will hereafter call infection whatever is propa-
gating.

Some modeling approaches are known to exactly reproduce
the behavior of propagation on networks in specific limiting
cases. For example, branching processes [17,18] may exactly
predict the probability distribution for the final state of a
system of infinite size. Similarly, heterogeneous mean field
models [19,20] may exactly predict the time evolution of
relevant mean values for an infinite system that is annealed
(i.e., its structure changes at a rate arbitrarily faster than
the propagation process). Finally, exact models are also
possible for very specific network structures, e.g., a linear
chain [21].

In this paper, we present a stochastic process that exactly
reproduces a propagation dynamics on quenched (fixed struc-
ture) configuration model networks of arbitrary size allowing
for repeated links and self-loops (to be defined shortly).
Section II defines the problem at hand and then presents our
approach by comparing it to a computer simulation algorithm,
which does not require a “network building” phase. However,
this perspective is much more than an algorithmic trick saving
computer resources: it changes a problem of propagation on
a network into a Markov birth-death process, a momentous
difference from an analytical point of view. In Sec. III, we
assume a large system size and obtain analytical results for
both the asymptotic behavior of the “epidemics,” where an
important fraction of the network gets infected, and for the
probability distribution of the outbreaks, where a small number
of nodes are affected. Our results compare advantageously
to numerical simulations and account for finite-size effects.
Finally, we show in Sec. IV how this approach generalizes
to a vast class of systems and discuss possibilities for future
improvements.

II. THE EXACT MODEL

A. Networks

A network model uses nodes to represent the elements
composing the system of interest and assigns links between
each pair of nodes corresponding to interacting elements. Two
nodes sharing a link are said to be neighbors, and the degree
of a node is its number of neighbors. The part of a link that
is attached to a node is called a stub: there are two stubs per
link and each node is attached to a number of stubs equal to
its degree. A link with both ends leading to the same node is
called a self-loop, and repeated links occur when more than
one link joins the same pair of nodes.

We define the configuration model (CM) [22] specified by
the vector n = [ n0 n1 . . . ]T as the (microcanonical) ensemble
of networks such that each network of this ensemble contains,
for each k, exactly nk nodes of degree k. Clearly, each network
of this ensemble has the same number of nodes N = ∑

k nk .
Since there are two stubs per link, the total number of stubs∑

k knk must be even.
It is common practice to explicitly forbid self-loops and

repeated links in CMs (CMF) since these structures are not
observed in many real-world systems. However, it is often
easier to study CMs allowing for self-loops and repeated links
(CMA). Of importance is the fact that the distinction between
CMF and CMA vanishes for large networks (the probability
for a link in a CMA to be a self-loop or a repeated link
goes as N−1). The knowledge acquired on CMAs can thus
be translated to CMFs.

A simple way to build a CM network goes as follows.
(i) For each k ∈ {0,1, . . .}, create nk nodes with k stubs.
(ii) Randomly select a pair of unmatched stubs and match them
to form a link. Special restriction for CMFs: if a self-loop or
repeated link is created, discard the whole network and return
to step (i). (iii) Repeat step (ii) until there are no unmatched
stubs left.

B. Propagation

For the sake of demonstration, we first consider what
may well be the simplest form of propagation on networks:
the susceptible-infectious (SI) model. A node is said to be
susceptible if it does not carry the infection and infectious
if it does. During an infinitesimal time interval [t,t + dt),
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a susceptible node, neighbor to an infectious one, has a
probability βdt to acquire the infection from the latter, hence
becoming infectious. Once infectious, a node remains in this
state forever.

For a given network structure, the following gives an
algorithmic implementation of the SI model. (i) Set each
node as either susceptible or infectious according to the initial
conditions. (ii) Define small time intervals and start with the
first one. (iii) For each infectious node, lookup their susceptible
neighbors. For each of them, randomly generate a number in
the interval [0,1) and test if it is lower than βdt . If yes, mark
the corresponding node as infectious in the next time interval.
(iv) Repeat step (iii) for the next time interval.

Now consider the following change to step (iii): perform
the random number test for each neighbor of the infectious
node, and, only when the test returns positive, verify if the
corresponding neighbor is susceptible (if yes, mark it as
infectious). This alternative algorithm is equivalent in all
points to the original, except that the knowledge of who is the
neighbor of an infectious node is not required until the very
moment an infection may occur. Inspired by this seemingly
benign observation, we will shortly present a stochastic
process, equivalent to susceptible-infectious dynamics on
CMA, that does not require an initial network construction
step. Instead, the network will be built on-the-fly, concurrently
with the propagation.

C. Equivalent stochastic process

CMA networks are built by randomly matching stubs
together. In order to perform this match on-the-fly, we track the
total number x−1 of unmatched stubs. All stubs belonging to
susceptible nodes are unmatched. Denoting xk the number of
susceptible nodes of degree k, the total number of unmatched
stubs belonging to infectious nodes is then

λ(x) = x−1 −
kmax∑
k=0

kxk, (1)

where x = [ x−1 x0 x1 . . . xkmax ]T is the state vector.
During the interval [t,t + dt), each of these λ(x) stubs has a

probability βdt to infect the corresponding neighboring node
under the condition that it is currently susceptible. Since this
infectious stub is currently unmatched, knowing which node
is at the other end simply requires to match it at random to one
of the (x−1 − 1) other unassigned stubs. If a susceptible stub
is chosen, the corresponding node is immediately infected and
no matched susceptible stubs are created.

Since dt is infinitesimal, matching one of the λ(x) stubs
has a probability βλ(x)dt to occur. In this case, the other stub
selected for match has a probability [λ(x) − 1](x−1 − 1)−1 to
also be infectious, causing no new infection. Matching the two
stubs amounts to decrease x−1 [and therefore λ(x)] by 2. We
refer to this class of events as a transition of type j = −1.

Alternatively, there is a probability kxk(x−1 − 1)−1 for
matching the infectious stub to a stub belonging to a suscepti-
ble node of degree k: it is marked as infectious by decreasing
xk by 1. Again, x−1 is decreased by 2 since two stubs have
been matched together. This kind of event is referred to as a
transition of type j = k.

(a) x-1 = 22, x3 = 2, λ(x) = 5. (b) x-1 = 18, x3 = 1, λ(x) = 4.

FIG. 1. Illustration of on-the-fly network construction. Suscepti-
ble (white circles) and infectious (gray circles) nodes each have a
number of stubs equal to their respective degree. (a) At some point
in the process, three links (thin black curves) have already been
assigned. Future dynamics does not depend on how infectious nodes
are linked (content of the gray zone) except for the total number λ(x)
of unassigned stubs belonging to infectious nodes (stubs crossing
the dashed border of the gray zone). (b) During any time interval
[t,t + dt), there is probability βλ(x)dt for an event to occur. Here,
after many such time intervals, two new links have been assigned
through an event of type j = 3 (matching stubs A and B) and an
event of type j = −1 (matching stubs C and D). Again, other than
for λ(x), the future dynamics is not affected by how infectious nodes
are linked.

Figure 1 illustrates the Markov stochastic process defined
by these state vectors and transition rules. One may see the
process from the infection’s perspective: until it has crossed
a link, it has no information concerning the node at the other
end. More formally, the master equation (notation compatible
with [23], Sec. 7.5)

dP (x,t)

dt
=

kmax∑
j=−1

[qj (x − rj )P (x − rj ,t) − qj (x)P (x,t)] (2)

governs the probability P (x,t) to observe state x at time t . For
each transition type j , the function qj (x) gives the probability
rate at which this type of event occurs (given that the state of
the system is currently x) while the vector rj gives the change
caused by the transition (i.e., the state becomes x + rj after the
transition). Translating the previous discussion in those terms,
we obtain

qj (x) =

⎧⎪⎪⎨
⎪⎪⎩

βλ(x)
λ(x) − 1

x−1 − 1
if j = −1,

βλ(x)
jxj

x−1 − 1
if j � 0

(3)

for the rate at which transitions occur and

rj =
{

[−2 0 0 0 . . .]T if j = −1,

[−2 −δ0j −δ1j −δ2j . . .]T if j � 0

(4)

(r−1 has −2 at position −1 and 0 everywhere else, and rj with
j � 0 has an additional −1 at position j ) for the effect of such
transitions. We use β = 1 without loss of generality (scaling
of time unit). Equations (2)–(4) define the stochastic process
of the configuration model generated on-the-fly (CMOtF). A
similar approach [24] has been developed independently for
the rigorous proof that a specific spreading model proposed by
Volz [25] holds true in the limit of large network size.
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FIG. 2. (Color online) Snapshots at different times (line styles)
of the probability distributions for the number of infectious nodes in
three configuration models (line weight and color). The on-the-fly pro-
cess (CMOtF) and the configuration model allowing self-loops and
repeated links (CMA) both give the same results. Even in such a small
network (N = 30), forbidding self-loops and repeated links (CMF)
have minimal effect. Each distribution has been obtained through
108 Monte Carlo simulations. Degree sequence used: n1 = 16,
n2 = 8, n3 = 4, and n4 = 2. All nodes are initially susceptible except
for one infectious node of degree 1.

D. Comparison to numerical simulations

Figure 2 is obtained through direct Monte Carlo simulations
for a network of N = 30 nodes. Results for CMA and
CMOtF are essentially identical (i.e., the difference between
them decreases as inversed square root of number of Monte
Carlo simulations), in agreement with our claim that CMOtF
exactly reproduces the behavior of CMA. The effect of
forbidding self-loops and repeated links accounts for the slight
difference between results for CMF simulations and their
CMOtF counterparts. Larger system sizes decrease further
these differences (N = 300 in Fig. 3) and therefore CMOtFs
become excellent approximations of CMFs.

In terms of storage requirements, each CMOtF Monte Carlo
simulation needs only to track the kmax + 2 integers composing
the state vector x. By comparison, a standard algorithm, first
building the network then propagating the infections, must
store the network structure as an adjacency list of Nz elements,
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FIG. 3. (Color online) Probability distribution for the number of
infectious nodes. The network is sufficiently large (N = 300) for our
asymptotic approximation to match the CM distributions around their
peaks. Note that, especially at early times, the CMF results are very
close to those of CMA and CMOtF (which is also an effect of larger
network). 108 Monte Carlo simulations. Degree sequence: n1 = 160,
n2 = 80, n3 = 40, and n4 = 20. For each degree, 5% of the nodes are
initially infectious.

where z is the average degree. Since kmax � N for many
networks of interest, the scaling of the memory requirements
much favors CMOtF for large N (e.g., N = 106, z = 5, and
kmax = 100).

Moreover, CMOtF will usually run faster than a standard
algorithm since it does not need to generate the parts of the
network that are not affected by the infection. Hence, if CMA
requires time τbuild to generate the network and time τspread to
perform the SI simulation, CMOtF will approximately require
time ρ τbuild + τspread, where ρ ∈ [0,1] is the fraction of the
links that only need to be allocated on-the-fly. At worst (ρ =
1), the execution time will be similar.

For the sake of simplicity, the numerical algorithms for
CMA, CMF, and CMOtF were all presented in terms of
infinitesimal time intervals. While this perspective is closer
to our analytical work, these algorithms may be translated to a
Gillespie-type [26] form that is faster and exact (to numerical
precision). Here is how this translation is done.

In the case of CMA and CMF, the network construction
is done as usual and the following algorithm is used. (i) Set
each node as either susceptible or infectious according to the
initial conditions. (ii) For each infectious node, draw a random
number �t > 0 from the probability density function βe−β�t

for each of its susceptible neighbor, and assign to this neighbor
a clock that will ring at time �t . (iii) Whenever a clock rings,
check the state of the associated node. If it is susceptible,
make the node infectious and proceed to step (iv). If it is
already infectious, ignore step (iv) and go to step (v). (iv) For
each susceptible neighbor of the newly infectious node, draw a
random number �t > 0 from the probability density function
βe−β�t and assign to this neighbor a clock that will ring at
time t + �t (where t is the current time). (v) Return to step
(iii) until no clocks remain.

In the case of CMOtF, the algorithm goes as follows.
(i) Set x = x(0) (its initial condition) and t = 0. (ii) Draw a
random number �t > 0 from the probability density function
βλ(x)e−βλ(x)�t . (iii) Draw a random integer j � −1 such
that j = −1 has probability [λ(x) − 1]/(x−1 − 1) to occur
while each j � 0 occurs with probability jxj/(x−1 − 1).
(iv) Increment t by �t and x by rj . (v) Return to step (ii)
until λ(x) = 0.

III. ASYMPTOTICALLY LARGE SYSTEMS

A. Gaussian approximation

The framework of a stochastic equation of the type defined
by Eqs. (2)–(4) offers the possibility of further simplification.
Here, also, the analytical tractability is a consequence of the
reduction to a state vector of dimension kmax + 2 and perhaps
the most significant advantage of our approach. As long as all
elements of x(t) [and λ(x(t))] are sufficiently “large,” Eq. (2)
can be approximated by a stochastic differential equation (see
Ref. [23], Sec. 4.3.5)

dx = a(x)dt + B(x) · dW, (5)

where the vector W(t) is a Wiener process, while vector a(x)
and matrix B(x) are given in terms of qj (x) and rj as

ai(x) =
∑

j

r
j

i qj (x), B
j

i (x) = r
j

i

√
qj (x). (6)
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An approximate solution x(t) ≈ μ(t) + ν(t), composed of a
deterministic term μ(t) and a stochastic perturbation ν(t), can
be obtained when the noise term B(x) · dW is much smaller
than the deterministic term a(x)dt [which implies that the
value of x(t) remains close to that of ν(t)]. Using the initial
conditions μ(0) = x(0) and ν(0) = 0, the ordinary differential
equation

dμ

dt
= a(μ) (7)

governs the deterministic contribution. The approximation
μ−1 − 1 ≈ μ−1, valid when μ−1 remains large, gives

dμ−1

dt
= −2λ(μ),

dμk

dt
= −kμkλ(μ)

μ−1
. (8)

One way to solve this system is to introduce a “time
parameter”

θ =
[

μ−1

x−1(0)

] 1
2

such that
dθ

dt
= − λ(μ)

θ x−1(0)
. (9)

We may then use Eq. (9) as a change of variable in Eq. (8),
replacing the “actual time” t by θ . Note that t = 0 corresponds
to θ = 1 and that θ decreases with time. The resulting dμj/dθ

differential equations are much simpler with solutions

μ−1 = x−1(0) θ2, μk = xk(0) θk (10)

as a function of θ . These can then be used in Eq. (9) to obtain
an ordinary differential equation depending on θ alone:

dθ

dt
=

kmax∑
k=0

xk(0)

x−1(0)
kθk−1 − θ. (11)

Solving for θ as a function of t will then provide μ(t) through
Eq. (10). This is in agreement with previous results based
on a heterogeneous mean field approach [25,27,28]. The final
state t → ∞ corresponds to the largest θ ∈ [0,1] such that
x−1(0)θ2 = ∑kmax

k=0 kxk(0) θk .
The perturbation term ν can be obtained by solving the

stochastic differential equation (see Ref. [23], Sec. 6.2)

dν = Ja(μ) · νdt + B(μ) · dW, (12)

where Ja(μ) is the Jacobian matrix of a evaluated at μ. Initial
conditions 〈ν(0)〉 = 0 and cov (ν(0)) = 0 give the solutions
〈ν〉 = 0 and (see [23], Sec. 4.4.9)

cov (ν) =
∫ t

0
exp

[∫ t

t ′
Ja(μ(t ′′))dt ′′

]
· B(μ(t ′))

·B(μ(t ′))T · exp

[∫ t

t ′
Ja(μ(t ′′))T dt ′′

]
dt ′. (13)

Since μ and ν contribute exclusively to the mean and
covariance of x, respectively, we obtain

〈x〉 = μ, cov(x) = cov(ν). (14)

Specifically, the mean number of infectious nodes is given by
N − ∑kmax

k=0 μk while its variance is
∑kmax

k,k′=0[cov(ν)]kk′ . These
values allow us to approximate the probability distribution for
the number of infectious nodes by a Gaussian distribution.

B. Branching process approximation

In Sec. III A, we have assumed that the probability distri-
bution remains concentrated about its mean value. However, it
is well known that this assumption is invalid when the initial
condition contains a very small amount of infectious nodes. In
fact, even if the parameters are such that the infection should
initially grow on average, random events may cause an early
end to the infection, thus splitting the probability distribution
in two parts: small outbreaks and large scale epidemics.

In order to consider such eventualities, we focus on the
initial behavior of asymptotically large systems for which
λ(x(0)) � x−1(0). Since x does not change much during these
early times, we may treat as a constant the probability pk for
a random node to be of degree k:

pk = xk(0)∑
k′ k′xk′(0)

. (15)

The transition rates thus becomes

qj (x) ≈ βλ(x)jpj (16)

for events of type j � 0, and we may consider that events
of type j = −1 do not occur. In this form, the problem
can be viewed as a branching process: an infection event of
type j � 1 directly causes j − 1 future infection events, the
probability for each of those future events to be of type j ′ being
proportional to j ′pj ′ . We define generations of infections as
follow: the nodes which begin as infectious at time t = 0
are part of generation 0, and generation n contains all the
nodes that have been infected by nodes of generation n − 1.
Although some nodes of generation n may be infected at an
earlier time than some nodes of generation n − 1, a higher
generation usually implies a later time of infection.

Following previous work [29,30], we model this branching
process using probability generating functions (PGFs). For our
purpose, we define a PGF as a power series, the coefficients
of which are probabilities; see Ref. [31] for further details
together with a more general perspective. A PGF generates its
associated sequence of coefficients. Hence, the PGF

g0(ξ ) =
∑

k

pkξ
k (17)

generates the probability distribution for the degree of a
random node, while the PGF

g1(ξ ) = g′
0(ξ )

g′
0(1)

=
∑

k kpkξ
k−1∑

k′ k′pk′
(18)

generates the probability distribution for the excess degree of a
node reached by following a random link (“excess” here means
that the followed random link is excluded from the degree
count). Alternatively, one may view the probability distribution
generated by g1(ξ ) as the number of infections of generation
n + 1 that follow from a single infection of generation n.

PGFs allow for formal and/or analytical treatment of
the generated sequences under the form of functions, often
simplifying both the notation and the calculations [29–31]. For
example, the composition g1(g1(ξ )) generates the distribution
of the number of infections of generation n + 2 that follow
from a single infection of generation n. Similarly, ξg1(ξg1(ξ ))
generates the total number of infections of generations n, n +
1, and n + 2 that follow from a single infection of generation
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n (including that infection). The concept generalizes to more
than one variable: ξg1(ξg1(ζ )) generates (through ξ ) the total
number of infections of generation n and n + 1 and (through
ζ ) the number of infections from generation n + 2 that follows
from a single infection of generation n.

As a slight generalization of the method presented in [30],
we recursively introduce the two-variables PGFs

fn(ξ,ζ ) = ξg1(fn−1(ξ,ζ )) with f0(ξ,ζ ) = ζ (19)

such that fn(ξ,ζ ) generates (through ξ ) the total number of
infections from generation 1 to n and (through ζ ) the number
of infections of generation n + 1 that follow from a single
infection of generation 1. Hence, for an initial condition where
all nodes are susceptible except for one randomly chosen
infectious node (generation 0), the PGF

hn(ξ,ζ ) = ξg0(fn(ξ,ζ )) (20)

generates (through ξ ) the total number of infections from
generation 0 to n and (through ζ ) the number of infections
of generation n + 1 that stem from these initial conditions; the
results of [30] correspond to hn(ξ,1). More generally, for an
initial condition containing I0 initially infectious nodes and λ0

initially infectious stubs, the PGF becomes

h̃n(ξ,ζ ; I0,λ0) = ξ I0 [fn(ξ,ζ )]λ0 . (21)

We now seek to distinguish small outbreaks from large scale
epidemics: the infinite-size propagation process terminates
during an outbreak, while finite-size effects are required for an
epidemic to end. In an infinite CM network [29], the probability
for a single infection event to cause a terminating chain of
infections (i.e., it may cause infections that themselves cause
infections, etc., but the total number of infections caused this
way is finite) is given by the lowest u � 0 satisfying

u = g1(u). (22)

Hence, u < 1 is the criteria for an epidemic to be possible.
Noting m the number of infectious nodes in generation n + 1,
the infinite-size infection process will terminate if and only
if each one of the corresponding m infection events causes
a terminating chain of events; this occurs with probability
um. Therefore, the total number of infectious nodes from
generation 0 to n that are part of outbreaks is generated by

h̃n(ξ,u; I0,λ0) (23)

in the general case [or by hn(ξ,u) for a single random
initially infectious node]. Since any remaining case leads to an
epidemic, the total number of infectious nodes from generation
0 to n that are part of epidemics is generated by

h̃n(ξ,1; I0,λ0) − h̃n(ξ,u; I0,λ0) (24)

in the general case [or by hn(ξ,1) − hn(ξ,u) for a single
random initially infectious node] . Since fn(1,u) = u for all
n, one easily demonstrates that the total probability for an
outbreak (or epidemic) is independent of the generation n.
Extracting the generated distribution (coefficients) from a PGF
may be done numerically through a Cauchy integral [29]
or, more efficiently, through a fast Fourier transform (FFT)
[30,32].

C. Comparison to numerical simulations

Applying the method of Sec. III A to the case studied in
Fig. 3 shows that, although this Gaussian approximation of the
exact dynamics Eqs. (2)–(4) assumes an asymptotically large
system, Eq. (14) provides reasonable results for networks as
small as N = 300. In other words, for N sufficiently large,
we can follow for all times the first two moments (mean
and variance) of the exact dynamics. This size-independent
Gaussian distribution becomes the universal limit for the
underlying finite-size propagation model.

Part of this success is due to the fact that the initial condition
contains λ0 = 26 infectious stubs (since for each degree 5% of
the nodes are infectious), a sufficiently large value to (almost)
guarantee that an epidemic will occur. In fact, using the method
of Sec. III B, we find u ≈ 0.6375, which implies that the total
probability for a small outbreak, uλ0 ≈ 8 × 10−6, is very un-
likely. This explains why the complete neglect of the influence
of small outbreaks provides accurate results in this case.

Figure 4 investigates the behavior of the final distribu-
tion (t → ∞) when small outbreaks can not be neglected.
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(a) n1 = 160, n2 = 80, n3 = 40 and n4 = 20 (108 simulations).

(b) n1 = 1600, n2 = 800, n3 = 400 and n4 = 200 (109 simulations).

FIG. 4. (Color online) Probability distribution for the number
of infectious nodes in the limit t → ∞. Since the initial condition
contains a small amount of infectious stubs (λ0 = 1 and = 4), the
CMOtF probability distribution (plain curves) is roughly divided
into two subdistributions: small outbreaks and large scale epidemics.
(a) While the separation between these subdistributions is unclear
for small networks (N = 300), (b) the distinction becomes sharper
as the size increase (N = 3000). Analytical results (dashed curves)
are obtained through branching processes (outbreaks) and Gaussian
approximation (epidemics). Summing the contributions of these two
limiting behaviors [dotted curve, only visible in (a) around the 80
infectious nodes mark] is insufficient to obtain the correct distribution
for the outbreaks of intermediate size. However, such intermediate
events become less likely as the network size increases, thus making
our two analytical distributions better approximations. Insets: zoom
on the distributions for few infectious nodes.
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Specifically, a single initially infectious node of degree 1
(λ0 = 1) or of degree 4 (λ0 = 4) is used for the same network
as in Fig. 3 [N = 300, Fig. 4(a)] and for one with the same
degree distribution with 10 times as many nodes [N = 3000,
Fig. 4(b)]. The distinction between the two limiting behaviors
(outbreaks and epidemics) becomes clearer as N increases.
Further comparisons may also be made with Fig. 2 for N = 30
and λ0 = 1.

For the small outbreaks, the branching process method
of Sec. III B provides the final distribution for the small
components with h̃∞(ξ,u; 1,λ0). These results are in good
agreement with the numerical simulations for the small
outbreaks, and increasing the network size improves this
agreement. However, the same branching process method
can not be used to predict the probability distribution for
the epidemics in the limit n → ∞: this distribution grows
without bounds with n since finite-size effects are completely
neglected. One result that does hold is that the total probability
for an epidemic is 1 − uλ0 .

We also use the Gaussian approximation of Sec. III A
to predict the shape of the probability distribution for the
outbreaks, then weight the whole distribution with a factor
1 − uλ0 . As seen on Fig. 4, the results are again in good
agreement with the numerical simulations, and increasing
the network size improves this agreement. It should be
noted that, a priori, there was no guarantee for this simple
approach to work: not only are the assumptions leading to
the Gaussian approximation not met, but also the propagation
processes that have a number of infectious stubs below
the average are more likely to end early (outbreaks) than
those that are above average. This introduces a bias in
the distribution for the epidemics. Nonetheless, the global
shape of the final distribution is quite stable under such
early perturbations. While the early behavior (and the initial
conditions) is important for obtaining the total probability for
epidemics, the final state of the epidemics is mainly governed
by the finite-size effects. Combining the two methods thus
provides a reliable estimate for the final distribution of the
epidemics.

Although our analytical predictions are rather good, we
systematically underestimate the value of the distribution for
intermediate number of infections: the missing probabilities
are being assigned to a larger number of infections. We may
view such intermediate events as “small epidemics”: they
would have led to “real epidemics” in a larger network,
but finite-size effects caused the propagation to stop earlier,
leading to a number of infections that may be comparable
to those of outbreaks. Increasing N and/or λ0 decreases the
probability of these events, and therefore improves the quality
of the results of our dual approach.

Finally, even for large N , our Gaussian approximation for
the distribution of epidemics shows systematic deviations:
the distribution falls off faster than a Gaussian for large
number of infections, and falls off slower for smaller-than-
average epidemics. This is due to the fact that the finite-size
effects become noticeable faster than predicted by our linear
approximation [the Jacobian matrix Ja(μ)]. Higher-order
approximations should improve the description.

IV. CONCLUSION

A. Generalization

The approach presented in this contribution heavily relies
on the fact that the SI dynamics can be expressed under a form
where, for each link, we at most once need to simultaneously
know the state of the two nodes joined by that link. In fact, we
can generalize our exact approach to a vast class of systems for
which this condition is respected. Indeed, given an arbitrary
number of accessible node states (instead of “susceptible” and
“infectious”), one could define a state vector x such that its
elements track the number of nodes with k unassigned stubs
for each accessible node state and for each possible value
of k.

As a concrete example, a susceptible-infectious-removed
(SIR) system, i.e., a susceptible-infectious system where
infectious nodes are removed at a constant probability rate,
could be represented by the state vector

x = [ xS0 xI0 xR0 xS1 xI1 xR1 xS2 . . .] T
,

where xSk , xIk , and xRk stand for the number of susceptible,
infectious, and removed nodes with k unassigned stubs,
respectively.1 Since the simultaneous knowledge of the state
of two neighboring nodes is at most required once, we may
perform on-the-fly neighbor assignment at the very time this
knowledge is required, discarding the two stubs that were
matched in the process.

An earlier version of this work [5] has made possible
a recent contribution [8] which introduces a model for the
deterministic (mean value) behavior of two interacting SIR
processes taking place on two partially overlaying networks.
Even though the dynamics is quite complicated, the on-the-
fly perspective allows us to accurately describe it at low
computational cost. In this case as in many others, an exact
stochastic version of the model could be implemented using
the approach described in this paper.

B. Summary and perspective

We have presented a procedure that allows the construction
of a network in a dynamical way on a need to know basis. This
slight change of perspective has profound implications on the
propagation dynamics on networks. It allows for a conceptual
framework where the propagation is described exactly by a
low-dimensional stochastic equation equivalent in all respects
to the complete time evolution of the original problem. The
low dimensionality translates in large computational gains
and, most importantly, it allows for analytical results through
the use of standard tools from stochastic calculus. Perhaps
the simplest of these tools allowed us to obtain a Gaussian
approximation of the distribution for all times, which become
exact in the large network limit. Another simple tool, the

1A quick analysis reveals that tracking the sum
∑

k xRk instead of
all the xRk would suffice for the same reason that tracking x−1 instead
of the xIk was sufficient in the SI case.
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branching process approach, allowed for a basic study of the
bimodal behavior of the distribution (outbreaks and epidemics)
that occurs when the initial condition does not guarantee
a certain epidemic. Future contributions could improve the
analytical description of intermediate events caused by early
finite-size effects, and refine the distribution for the epidemics
beyond the Gaussian assumption. Another interesting area
of research concerns the application of the general method
to other problems. Recent steps toward a general stochastic

approach of the spreading dynamics on complex networks
have already been taken [33].

ACKNOWLEDGMENTS

The authors are grateful to CIHR (P.-A.N., A.A., and
L.H.-D.), NSERC (L.H.-D., V.M., and L.J.D.), and FRQ–NT
(L.H.-D., V.M., and L.J.D.) for financial support. We are
grateful to an anonymous referee for pointing out Ref. [24].
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