Electron-positron momentum distributions measured by the coincidence Doppler
broadening method can be used in the chemical analysis of the annihilation
environment, typically a vacancy-impurity complex in a solid. In the present
work, we study possibilities for a quantitative analysis, i.e., for
distinguishing the average numbers of different atomic species around the
defect. First-principles electronic structure calculations self-consistently
determining electron and positron densities and ion positions are performed for
vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The
ensuing simulated coincidence Doppler broadening spectra are compared with
measured ones for defect identification. A linear fitting procedure, which uses
the spectra for positrons trapped at vacancies in pure constituent metals as
components, has previously been employed to find the relative percentages of
different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65,
094107 (2002)]. We test the reliability of the procedure by the help of
first-principles results for vacancy-solute complexes and vacancies in
constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version
submitted on November 8 2006. Published on February 14 200