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ABSTRACT

Motivation: Lateral gene transfer is amajormechanism contributing to

bacterial genomedynamics and pathovar emergence via pathogenicity

island (PAI) spreading. However, since few of these genomic

exchanges are experimentally reproducible, it is difficult to establish

evolutionary scenarios for the successive PAI transmissions between

bacterial genera. Methods initially developed at the gene and/or nuc-

leotide level for genomics, i.e. comparisons of concatenated

sequences, ortholog frequency, gene order or dinucleotide usage,

were combined and applied here to homologous PAIs: we call this

approach comparative PAI genometrics.

Results:YAPI, aYersiniaPAI, and related islandswere compared with

measure evolutionary relationships between relatedmodules. Through

use of our genometric approach designed for tracking codon usage

adaptation and gene phylogeny, an ancient inter-genus PAI transfer

was oriented for the first time by characterizing the genomic environ-

ment in which the ancestral island emerged and its subsequent

transfers to other bacterial genera.

Contact: claude-alain.roten@unil.ch

Supplementary information: http://www.unil.ch/comparative

genometrics/collyn_et_al_2005/collyn.htm

INTRODUCTION

In pathogenic bacteria, virulence genes are often clustered into

pathogenicity islands (PAIs) (Hacker and Kaper, 2000). These lat-

erally acquired genetic elements (GEs) are present on the chromo-

somes of bacterial pathogens but not on their counterparts in related

but harmless bacteria. The foreign origin of PAIs is evidenced by

the presence of various mobility genes, as well as by G + C content

and codon usage that generally differ from those of the core gen-

ome. Since gene acquisition is an important evolutionary process by

which microorganisms obtain novel phenotypes (Dobrindt and

Hacker, 2001), PAIs play an essential role in virulence gene spread-

ing and contribute to the emergence of new pathogens (Hacker and

Kaper, 2000; Ochman et al., 2000). However, even though homo-

logous PAIs have already been described in distant bacterial spe-

cies, no clear scenario describing ancient inter-genus transmission

of these mobile units has yet been demonstrated—partly because

attempts to experimentally observe PAI transfer have rarely been

successful. Thus, bioinformatics appears to be the method of choice

for establishing accurate descriptions of lateral genetic exchanges in

prokaryotes.

Bioinformatics tools have already been developed for comparat-

ive genomics. Two different strategies have been used successfully:

the first, based on comparisons of homologous DNA sequences or

gene units, measures either (1) gene concatenate similarities (Wolf

et al., 2001), (2) ortholog frequencies (Snel et al., 1999) or (3) gene

order conservation (Blanchette et al., 1999). In contrast to the first-

listed technique, the latter two, which use genes as basic units, are

insensitive to homing, i.e. the tendency of the codon usage of mobile

elements to become similar to that of the cell counterpart. Both

techniques were efficiently developed for viral or mitochondrial

DNA sequences affected by high mutation rates (Wolfe et al.,
1987; Blanchette et al., 1999; Montague and Hutchison, 2000;

Herniou et al., 2003) and have subsequently been applied to bac-

terial genome phylogeny (Fitz-Gibbon and House, 1999; Snel et al.,
1999; Tekaia et al., 1999; Snel et al., 2002). Since homing of

transmissible GEs affects phylogenetic analyses based on the sim-

ilarity of laterally acquired genes, these methods can also be used

for comparative PAI analysis.

The second strategy is based on nucleotide signatures and

enables comparison of non-homologous DNA sequences. The

genome signature reflects codon usage by measuring dinucleotide

biases (Karlin and Cardon, 1994; Karlin et al., 1998) and is able

to (1) specify evolutionary relationships (Karlin et al., 1994),

(2) measure taxonomical distances between bacteria, plasmids

and eukaryotic organelles (Campbell et al., 1999) and (3) detect

bacterial, chromosomal PAIs (Karlin, 2001). However, the genome

signature must be carefully interpreted, since horizontally acquired

genes gradually adapt their codon usage and thus their nucleotide

composition to those of the core genome: the more ancient the

genetic acquisition, the less conserved the PAI signature.

When applied to whole PAIs or some of their gene subsets, a

combination of these comparative methods referred to here as com-

parative pathogenicity island genometrics appears capable of docu-

menting lateral transfer at the gene and nucleotide levels.

Homologous PAIs shared by non-closely-related species constitute

suitable models for testing this strategy.

We recently identified a 11 kb type IV pilus gene cluster ( pil) on

the chromosome of the enteropathogenic bacteria Yersinia
pseudotuberculosis (Collyn et al., 2002). This virulence factor is

encoded by a 98 kb PAI called YAPI (Collyn et al., 2004a). A DNA�To whom correspondence should be addressed.
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segment homologous to Y.pseudotuberculosis YAPI (YAPIpst) was

found in the chromosome of Yersinia enterocolitica (Collyn et al.,
2004b), the other enteropathogenic species in the Yersinia genus.

Designated as YAPIent, this 66 kb PAI comprises 61 ORFs, of which

41 are homologous to YAPIpst genes. Furthermore, 37 of the latter

(including the pil genes) have counterparts on the 134 kb SPI-7 PAI

from Salmonella enterica serovar Typhi (SPI-7ty) (Fig. 1), an

Enterobacteriaceae found in the host digestive tract along with

enteropathogenic Yersiniae. Of the 37 orthologs, 32 shared by

YAPIs and SPI-7 were also detected in 1 W14, a 297 kb PAI

from the entomopathogenic bacterium Photorhabdus luminescens
(Duchaud et al., 2003). Furthermore, sequence analyses of SPI-7,

YAPIs and 1 W14 showed that all contain coding sequences (CDS)

related to type IV pilus-encoding genes and other transfer genes

harbored on the Salmonella conjugative plasmids from the same

family, R64 and ColIbP9. All these data suggest a common origin

for R64-like plasmids, SPI-7, 1 W14 and YAPIs (Pickard et al.,
2003; Collyn et al., 2004a). Since YAPIs, SPI-7 and 1 W14 are

(1) fully sequenced and well documented, (2) harbored by distinct

bacterial genera and (3) related to a conjugative plasmid likely to

have contributed to their emergence (Pickard et al., 2003), they

constitute a paradigmatic system for challenging PAI-scale phylo-

genetic scenarios.

MATERIALS AND METHODS

Sequence sources

The database accession numbers of PAI and plasmid sequences are, res-

pectively, SPI-7ty, NC_003198; 1W14, NC_005126, YAPIpst, AJ627388;

pSLT, NC_003277; R721, NC_002525; R64, NC_005014; ColIb-P9,

NC_002122; pCD1, NC_003131; pCP1, NC_003132; pMT1, NC_003134

and pYV, NC_005017. The YAPIent sequence was downloaded from the

Sanger website (www.sanger.ac.uk/Projects/Y_enterocolitica/).

Ortholog identification

Amino acid sequences of all CDSs from the four PAIs and two plasmids were

compared with those of related GEs using BLASTP 2.2.10 (Altschul et al.,

1997) with the BLOSUM62 matrix and gap penalties of 11 and 1. The

threshold of E-values was 0.01 and non-reciprocal matches were removed.

When a protein sequence presented several orthologs, only the best E-value

comparison was considered.

Similarity analysis of concatenated pil genes

All the pil gene products housed by the YAPIs, SPI-7, 1 W14, R64 and

ColIbP9 were concatenated as previously described (McGeoch et al., 2000;

Wolf et al., 2001; Ling et al., 2002; Sharp et al., 2005) and compared using

ClustalW (Thompson et al., 1994). The Neighbor-Joining (NJ) tree was

drawn with Treeview v.1.1.6 (Page, 1996).

Evolutionary distance estimated by

ortholog frequencies

Evolutionary relationships between PAIs and plasmids were measured by the

proportion of orthologous genes shared by pairs of GEs. The method differs

slightly from that previously reported (Snel et al., 1999). For instance, when

selecting GEa as reference, the distance between GEa and GEb corresponds

to the proportion of GEb genes having a GEa homolog. The resulting dis-

tance matrix was analyzed using the Phylip package (Felsenstein, 2004) via

the Unweighted Pair Group Method with Arithmetic Means (UPGMA),

Neighbor-Joining (NJ) and Fitch Margoliash methods. Resulting dendro-

grams were drawn with Treeview v.1.1.6. Calculated for the UPGMA

tree, the root of these ultrametric dendrograms is posted on the figures at

the midpoint of the longest pathway between taxa.

Gene order comparison

In order to quantify the inversion and transposition events leading to the

current organization of PAIs and plasmids, we measured the proportion of

conserved ortholog pairs in these GEs, as previously described (Blanchette

et al., 1999; Greub et al., 2004). Dendrograms and related roots were

calculated as for the comparison of ortholog frequencies.

Dinucleotide signature analysis

Dinucleotide signature analysis was performed according to the method of

Campbell and co-workers (Karlin and Cardon, 1994; Karlin et al., 1998;

Campbell et al., 1999). The distance between pairs of GEs was estimated by

summing up all the absolute differences in dinucleotide bias (Manhattan

distances). Resulting matrices were represented as UPGMA, NJ and Fitch

Margoliash dendrograms. A dissimilarity matrix of Euclidean distances

generated for all PAIs and plasmids was also represented by a principal

coordinates (PCO) analysis (Gower, 1966).

Fig. 1. Genetic map of YAPI-related PAIs. Only homologous CDSs present on four PAIs (YAPIent from Y. enterocolitica 8081, YAPIpst from Yersinia

pseudotuberculosis 32777, SPI-7ty from Salmonella enterica Typhi CT18 and 1 W14 from Photorhabdus luminescens W14) are shown. Gray and black arrows

represent pil and phe-tRNA genes, respectively. The size in kb of non-homologous regions is indicated on the map. YAPIpst gene designations are those from

Genbank. Supplementary Table 1 displays correspondences between orthologs. SPI-7 described in serovar Typhi (SPI-7ty) is also harbored by serovars Dublin

and Paratyphi. Despite the fact that SPI-7 gene composition varies in different serovars, the 32 YAPI orthologs are present in all known variants (Pickard et al.,

2003). We used SPI-7ty in our study, since only the latter was fully sequenced.
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Dendrogram robustness

The robustness of the analyses shown in Figures 2 and 4 was evaluated by

performing an omit test on the UPGMA, NJ and Fitch Margoliash dendro-

grams: for each final tree of n GEs, n subtrees are produced with n � 1 GEs,

where each GE is omitted in turn. The conservation of subtree topologies

indicates the robustness of the final dendrogram.

In NJ and Fitch Margoliash distance analysis, the dinucleotide usage

distance biases were bootstrapped: 1000 distance matrices were built by

random resampling with R 2.0.1 (Ihaka and Gentleman, 1996) and Fitch

Margoliash trees were calculated using the Phylip package. A consensus

dendrogram obtained with the extended Majority Rule method was used to

obtain a bootstrapped evaluation of the original analysis.

RESULTS

YAPI, SPI-7 and 1 W14 were generated by horizontal

transfer of an ancestral pathogenicity island

Since the pil operon was the only identified functional unit shared by

the four PAIs and the two R64-related plasmids, we first measured

sequence similarity between Pil proteins encoded by these GEs

using ClustalW (Supplementary Fig. 1). Very similar trees were

drawn when comparing individual genes (data not shown). Unfor-

tunately, this investigation failed to shed light on PAI emergence:

no unambiguous conclusion about PAI transfer could be drawn from

the dendrogram, which was characterized by poor resolution of

major branches. The divergence of type IV pilus function in the

different GEs (plasmids, bacterial conjugation; PAIs, bacterial

adhesion, respectively) might also be responsible for pil operon

sequence variations.

To bypass this difficulty, the frequency of orthologs present on

PAIs and plasmids was used to identify those GEs exhibiting the

most similar organization (Snel et al., 1999). The UPGMA repres-

entation of the resulting dissimilarity matrix provided more

information than ClustalW analyses: R64-like plasmids were

clearly discriminated from YAPIs, SPI-7 and 1 W14 (Fig. 2A),

suggesting that a unique, ancestral PAI emerged in a bacterium

after chromosomal integration of a R64-like plasmid and was

then transferred to other bacterial genera. NJ representations of

this distance matrix provided tree topologies similar to those gen-

erated by UPGMA (Supplementary Fig. 2). To confirm this scen-

ario, PAIs and plasmids were compared by using gene order

breakpoint analysis (Blanchette et al., 1999) measuring local

gene order and rearrangement events (insertion, deletion, transposi-

tion or inversion) in conserved gene sets: we obtained similar results

to those obtained by ortholog frequency analysis (Fig. 2B).

The ancestral YAPI emerged from a Salmonella GE

The next step was to specify the bacterial environment in which the

ancestral PAI emerged. Dinucleotide usage biases, constant along

�50 kb sequences, are efficient tools for comparing small GEs such

as plasmids or mitochondria (Campbell et al., 1999) and detecting

PAIs along prokaryotic chromosomes (Karlin, 2001). Hence, this

genometric method appears to be appropriate for PAI comparison

but, until now, had never been used for this purpose—most probably

because PAIs often display chimeric genetic structures and thus

exhibit heterogeneous nucleotide patterns. However, determination

of dinucleotide frequencies on related modules (i.e. gene subsets

from a common source and no smaller than animal mitochondrial

genomes) might be useful for PAI comparison.

Before measuring inter-species/genus relationships, we first chal-

lenged the signal constancy of genome signatures of sets of PAI

orthologs. Dinucleotide analyses of (1) pil operons, (2) genes loc-

ated upstream or (3) downstream of the pil operon and (4) the entire

Fig. 2. Gene map comparisons of pil-harboring plasmids and PAIs: UPGMA

trees of ortholog content (A) and gene order conservation (B). PAIs are in bold

type. The root is indicated on the UPGMA dendrogram by a short segment

running parallel to the deepest branch. The bar represents estimated

evolutionary distance scale, based on dissimilarity frequencies. Dendrogram

topologies were assessed using omit tests.
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set of orthologs for all PAIs indicated that this gene module con-

stitutes an homogeneous core of an ancestral PAI, since the four

dendrogram topologies were conserved (Fig. 3). Figure 3 also shows

that pil operon dinucleotide usage was similar to those for the

orthologs common to the four PAIs: we therefore compared the

genome signatures of (1) PAI- and plasmid-borne pil operons

and (2) all PAI orthologs and the R64-like plasmid sequences,

regardless of whether they included pil genes or not. All the res-

ulting trees were very similar (Fig. 4). As a control, our analysis also

included the R721 self-transmissible plasmid—distantly related to

R64 but also bearing pil CDSs (Kim and Komano, 1992): its dinuc-

leotide usage diverged strongly from those of the R64-related plas-

mids, demonstrating that the genome signature method can indeed

be used for phylogenetic analysis. NJ and Fitch Margoliash repres-

entations provided topologies similar to those generated by

UPGMA (Supplementary Figs 3 and 4). All the results presented

in Figures 3 and 4 clearly reveal that dinucleotide signatures have

been conserved along the sequences of PAIs subsets and plasmids

and demonstrate that PAI gene subsets can be reliably compared

with whole plasmid sequences, including non-homologous genes.

Finally, in order to identify the bacterial environment in which the

ancestral PAI emerged, our study also included plasmids not har-

boring the pil operon: (1) pSLT1, isolated from Salmonella and not

involved in YAPIs and SPI-7 emergence (McClelland et al., 2001);

(2) virulence-associated plasmids from Yersinia pestis (pCD) and

Y.enterocolitica (pYV) and (3) Y.pestis plasmids encoding a murine

toxin (pMT) and a plasminogen activator (pPCP). Unfortunately, no

Photorhabdus plasmid sequences were available in databases for

comparative purposes. Figure 5A shows that the dinucleotide fre-

quencies of two R64-family plasmids (R64 and ColIb-P9) were

Fig. 3. Dinucleotide signature comparisons for the four PAIs: UPGMA dendrograms of dinucleotide signature comparisons with orthologs (Fig. 1) located

upstream (A), within (B) and downstream (C) of the pil operon and for the whole set of orthologs (D). The similar topology of all four trees indicates that

dinucleotide signature is homogeneous within ortholog sets. Roots on UPGMA trees are posted as in Figure 2. The bar represents the distance scale in thousandths

of the average dinucleotide usage bias, normalized to nucleotide content (Campbell et al., 1999). Dendrogram topologies were assessed using omit tests.
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similar and resembled that of Salmonella plasmid pLST1, thus

validating the specificity of the Salmonella plasmid signature.

Since R721 houses tra and pil genes, it could theoretically be

the source of the ancestral island formed by plasmid integration

into a bacterial chromosome. Nevertheless, dinucleotide frequency

comparisons clearly showed that the R721 plasmid did not contrib-

ute to the emergence of YAPIs, 1 W14 or SPI-7, since its dinuc-

leotide signature diverged strongly from those of all PAIs. Our

Fig. 4. Dinucleotide signature comparison of PAIs and pil-encoding plas-

mids. UPGMA dendrograms for comparisons of pil operons (A) and whole

plasmid sequences associated with PAI ortholog subsets without (B) or with

pil genes (C). PAIs are in bold type. Scale units and roots (if any) are described

in Figure 3.

Fig. 5. Dinucleotide signature comparisons for SPI-7, YAPI, 1W14 and

various plasmids from Yersinia, Salmonella and Escherichia. (A) UPGMA

dendrogram of these comparisons, supported by a bootstrap analysis of NJ and

Fitch dendrograms (Supplementary Fig. 6). (B) PCO analysis of the same

comparisons and (C) its percentage variation expressed by the 10 major axes,

sorted by decreasing order of magnitude along the horizontal axis. Yersinia

and Salmonella GEs are shown on light gray and dark gray backgrounds,

respectively. GEs not bearing a type IV pilus gene cluster are in italics and

PAIs are in bold type. Scale units and roots (if any) are described in Figure 3.

The distance matrix used for these representations is posted as Supplementary

Fig. 5.
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conclusion is also supported by the lower degree of sequence con-

servation between R721-encoded Pil proteins and their counterparts

on PAIs and the R64-related plasmids. In contrast, the genome

signatures of the R64-plasmid family and SPI-7 were found to

be very similar, indicating that a plasmid from the R64 family

was the source of the Salmonella PAI. Since representations of

phylogenetic trees introduce some bias in relative distances and

imply that all sequences have a common ancestor, we also

Fig. 6. The most parsimonious model of YAPI formation. An ancestral R64 plasmid is incorporated into the ancestral Salmonella chromosome. Loss of R64

genes probably results from imperfect excision of the conjugative plasmid. The ancestral PAI (PISYP) was transmitted to Yersinia prior to Yersinia enterocolitica
and Y.pseudotuberculosis speciation. In each bacterium, various DNA rearrangements (e.g. gene deletions and additions) result in a segment which is common to

the four islands (ancestral PAI) and others which are specific to each bacterium. YAPI is absent from the genome of Yersinia pestis [the latter having recently

emerged from Y.pseudotuberculosis (Achtman et al., 1999)]. Since YAPI can spontaneously excise from Y.pseudotuberculosis (Collyn et al., 2004a), Y.pestis
derives from a YAPI-deleted clone. None of our data indicates an intermediary role ofPhotorhabdus 1 W14 in the ancestral PAI transmission from Salmonella to

Yersinia or that YAPI was involved in the transfer from Salmonella to Photorhabdus. Indeed, since no PAIs or plasmids share more CDSs with 1 W14, we

therefore prefer to consider a more parsimonious scenario based on the independent acquisition of an ancestral island from Salmonella.

Comparative pathogenicity island genometrics
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performed a PCO analysis (Fig. 5B) providing no dendrogram, but

calculating distance estimations of GE relationships more accur-

ately. The close clustering of SPI-7 and the R64-related and pSLT1

plasmids demonstrates that the SPI-7 module presents a Salmonella-

plasmid signature. In conclusion, our dinucleotide analyses revealed

that a R64-related plasmid was the source of an ancestral PAI in a

Salmonella environment. These results consequently enabled us to

orient an ancient PAI transfer for the first time: a pristine island

referred as PISYP (i.e. PAI module shared by Salmonella, Yersinia
and Photorhabdus) first emerged in a Salmonella environment and

then spread into the Yersinia and Photorhabdus genera.

Y.pseudotuberculosis and Y.enterocolitica acquired

ancestral YAPI prior to speciation

The close relationship between YAPIent and YAPIpst raises the

question of how this PAI was acquired by both species and whether

this DNA transfer occurred before or after enteropathogenic Yersinia
speciation. In all the above analyses, the distances separating either

YAPIpst or YAPIent from the other GEs were found to be almost

identical (Figs 2–5 and Supplementary Fig. 1). This observation

supports a parsimonious scenario proposing a contemporary

acquisition of PISYP predating the enteropathogenic Yersiniae

speciation. Furthermore, the similar degree of identity between

(1) YAPIent and YAPIpst gene products (64–97% identity; average

82%) (Collyn et al., 2004b) and (2) homologous proteins encoded

by the chromosomal cores of both Yersinia species (70–97%

identity; average 86%) (Supplementary Table 2) reinforce our

evolutionary scenario.

DISCUSSION

This study is the first to measure evolutionary relationships between

PAIs and/or PAI modules using comparative PAI genometrics, i.e.

the simultaneous application to mobile GEs of tools developed for

prokaryotic chromosome comparisons at nucleotide or gene levels.

Since large PAIs usually result from successive additions of het-

erologous DNA modules, the identification of a common gene set in

PAIs was essential for evaluating this overall strategy. We showed

that dinucleotide signatures can be used as phylogenetic tools for

PAI modules containing genes from the same origin, when applied

to sequences not smaller than 30 kb. Consequently, tools have to be

developed for highlighting segmentation in PAI modules that lack

homology to identified sequences. Moreover, mobile GEs respons-

ible for PAI emergence (including the Salmonella and Yersinia
plasmids used here) can display distinct genome signatures when

compared with their recipient chromosome. The latter GEs are not

directly relevant to the understanding of ancestral PAI emergence,

since their horizontal transfer can be accurately oriented by

comparative genometrics of PAIs and mobile GEs.

Comparative PAI genometrics enabled us to orient PISYP hori-

zontal transfers. Since conjugative plasmids containing type IV

pilus genes have not been isolated from Yersinia or Photorhabdus,
PISYP would have most probably emerged in bacteria such as

Salmonella harboring conjugative plasmids and PAIs. This proposal

is supported by dinucleotide frequency analyses: the YAPI- and

Yersinia plasmids signatures diverge significantly, confirming the

various origins of these GEs. Moreover, YAPI signatures are

more closely related to those of Salmonella plasmids than those

of Yersinia plasmids. All these data enable us to propose a

parsimonious evolutionary scenario for YAPI emergence (Fig. 6).

Since YAPI acquisition by Yersiniae is probably an ancient transfer

event, this PAI would have progressively adopted the codon and

nucleotide usage of the host (Hacker and Kaper, 2000), explaining

the divergence of the YAPI and SPI-7 dinucleotide signatures. This

nucleotide adaptation is a strong argument in favor of genome

signatures as phylogenetic tools, when they are challenged using

several representations of distance matrix comparisons. However,

our scenario does not provide a time frame for the ancestral R64

plasmid integration into the Salmonella chromosome.

In conclusion, this contribution reveals how comparative gen-

ometrics enables characterization of GEs responsible for the forma-

tion of PAIs or related modules (prophages, plasmids, transposons,

etc.). Our multiscale, comparative approach opens up new horizons

in the understanding of microbial genome evolution due to hori-

zontal transfer in general and the emergence of pathogenic bacterial

species by virulence gene transfer in particular.
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