18 research outputs found

    Multi-phase Nature of a Radiation-Driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    Get PDF
    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2×106M⊙2\times 10^6 M_\odot) black hole using 3D radiation hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray dominated region in the "radiation-driven fountain" (Wada 2012) with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick "torus" around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳1h/r \gtrsim 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase ( > 1000 K) as well as in a cold ( 10310^3 cm−3^{-3}) phase. The velocity dispersion of H2_2 in the vertical direction is comparable to the rotational velocity, which is consistent with near infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12μm\mu m), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75 deg, the spectral energy distribution (~ 2 -- 60 μm\mu m) of this model is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.Comment: 9 pages, 5 figures. Accepted for ApJL. A movie file for Fig.5b can be downloaded from http://astrophysics.jp/Circinus

    IC 630: Piercing the Veil of the Nuclear Gas

    Full text link
    IC 630 is a nearby early-type galaxy with a mass of 6×1010M⊙6 \times 10^{10} M_{\odot} with an intense burst of recent (6 Myr) star formation. It shows strong nebular emission lines, with radio and X-ray emission, which classifies it as an AGN. With VLT-SINFONI and Gemini North-NIFS adaptive optics observations (plus supplementary ANU 2.3m WiFeS optical IFU observations), the excitation diagnostics of the nebular emission species show no sign of standard AGN engine excitation; the stellar velocity dispersion also indicate that a super-massive black hole (if one is present) is small (M∙=2.25×105 M⊙M_{\bullet} = 2.25 \times 10^{5}~M_{\odot}). The luminosity at all wavelengths is consistent with star formation at a rate of about 1−2M⊙1-2 M_{\odot}/yr. We measure gas outflows driven by star formation at a rate of 0.18M⊙0.18 M_{\odot}/yr in a face-on truncated cone geometry. We also observe a nuclear cluster or disk and other clusters. Photo-ionization from young, hot stars is the main excitation mechanism for [Fe II] and hydrogen, whereas shocks are responsible for the H2_2 excitation. Our observations are broadly comparable with simulations where a Toomre-unstable, self-gravitating gas disk triggers a burst of star formation, peaking after about 30 Myr and possibly cycling with a period of about 200 Myr.Comment: 32 pages, 19 figures Accepted for publication in Ap

    Models of Dust and Gas Tori in Active Galactic Nuclei

    Get PDF
    The goal of this thesis is to gain theoretical understanding of the distribution of dust and gas in the innermost parsecs of Active Galactic Nuclei. Unified schemes demand a circum-nuclear disk or "torus" to geometrically unify two separate classes of observed objects (face-on and edge-on view onto the torus). In a multi-step approach, we work towards the establishment of realistic simulations of this massive and dense gas and dust reservoir, in order to be able to interpret near- and mid-infrared interferometric observations (MIDI, AMBER), which are able to resolve dust structures in the centres of Seyfert galaxies. In a first step, we investigate an analytical torus model (the so-called "Turbulent Torus Model") with the help of radiative transfer calculations and find gross agreement with large aperture, as well as high-resolution observations of Seyfert galaxies. However, the model SEDs show too pronounced silicate emission features in the face-on case. This can be overcome with the help of three-dimensional clumpy tori, calculated in a second step. Special emphasis is put on the differences of clumpy and continuous dust distributions, also concerning interferometric observations. In a further step, we apply hydrodynamic simulations to trace the evolution of a nuclear star cluster, which provides energy via discrete supernova explosions and mass from stellar mass loss. With these ingredients, a highly dynamical system forms, with gas streaming inward, in form of long filaments, which cool due to radiative energy losses. In the vicinity of the minimum of the effective potential (caused by gravity of the nuclear stellar cluster and black hole, as well as rotation of the gas), a turbulent disk forms, surrounded by a less dense clumpy and filamentary toroidal structure. Subsequent radiative transfer calculations yield good agreement with Seyfert galaxy spectral energy distributions (observed with the Spitzer space telescope). Problems of the comparison of continuous models with the silicate feature strength to H I column density relation can be overcome with the help of our new approach

    The Galactic Centre source G2 was unlikely born in any of the known massive binaries

    Full text link
    The source G2 has already completed its pericentre passage around Sgr A*, the super-massive black hole in the centre of our Galaxy. Although it has been monitored for 15 years, its astrophysical nature and origin still remain unknown. In this work, we aim to test the hypothesis of G2 being the result of a stellar wind collision. To do so, we study the motion and final fate of gas clumps formed as a result of collisions of stellar winds in massive binaries. Our approach is based on a test-particle model in order to describe the trajectories of such clumps. The model takes into account the gravitational field of Sgr A*, the interaction of the clumps with the interstellar medium as well as their finite lifetimes. Our analysis allows us to reject the hypothesis based on four arguments: i) if G2 has followed a purely Keplerian orbit since its formation, it cannot have been produced in any of the known massive binaries since their motions are not consistent; ii) in general, gas clumps are evaporated through thermal conduction on very short timescale (< 100yr) before getting close enough to Sgr A*; iii) IRS 16SW, the best candidate for the origin of G2, cannot generate clumps as massive as G2; and iv) clumps ejected from IRS 16SW describe trajectories significantly different to the observed motion of G2.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    Pericenter passage of the gas cloud G2 in the Galactic Center

    Full text link
    We have further followed the evolution of the orbital and physical properties of G2, the object currently falling toward the massive black hole in the Galactic Center on a near-radial orbit. New, very sensitive data were taken in April 2013 with NACO and SINFONI at the ESO VLT . The 'head' of G2 continues to be stretched ever further along the orbit in position-velocity space. A fraction of its emission appears to be already emerging on the blue-shifted side of the orbit, past pericenter approach. Ionized gas in the head is now stretched over more than 15,000 Schwarzschild radii RS around the pericenter of the orbit, at ~ 2000 RS ~ 20 light hours from the black hole. The pericenter passage of G2 will be a process stretching over a period of at least one year. The Brackett-{\gamma} luminosity of the head has been constant over the past 9 years, to within +- 25%, as have the line ratios Brackett-{\gamma} / Paschen-{\alpha} and Brackett-{\gamma} / Helium-I. We do not see any significant evidence for deviations of G2's dynamical evolution, due to hydrodynamical interactions with the hot gas around the black hole, from a ballistic orbit of an initially compact cloud with moderate velocity dispersion. The constant luminosity and the increasingly stretched appearance of the head of G2 in the position-velocity plane, without a central peak, is not consistent with several proposed models with continuous gas release from an initially bound zone around a faint star on the same orbit as G2.Comment: 10 figures, submitted to Ap

    A diversity of dusty AGN tori: Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies

    Full text link
    The AGN-heated dust distribution (the "torus") is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear Super-Massive Black Hole. Yet, even its most basic structural properties (such as its extent, geometry and elongation) are unknown for all but a few archetypal objects. Since most AGNs are unresolved in the mid-infrared, we utilize the MID-infrared interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) that is sensitive to structures as small as a few milli-arcseconds (mas). We present here an extensive amount of new interferometric observations from the MIDI AGN Large Program (2009 - 2011) and add data from the archive to give a complete view of the existing MIDI observations of AGNs. Additionally, we have obtained high-quality mid-infrared spectra from VLT/VISIR. We present correlated and total flux spectra for 23 AGNs and derive flux and size estimates at 12 micron using simple axisymmetric geometrical models. Perhaps the most surprising result is the relatively high level of unresolved flux and its large scatter: The median "point source fraction" is 70 % for type 1 and 47 % for type 2 AGNs meaning that a large part of the flux is concentrated on scales smaller than about 5 mas (0.1 - 10 pc). Among sources observed with similar spatial resolution, it varies from 20 % - 100 %. For 18 of the sources, two nuclear components can be distinguished in the radial fits. While these models provide good fits to all but the brightest sources, significant elongations are detected in eight sources. The half-light radii of the fainter sources are smaller than expected from the size ~ L^0.5 scaling of the bright sources and show a large scatter, especially when compared to the relatively tight size--luminosity relation in the near-infrared.Comment: A&A in press; 93 pages, 63 figures, 39 tables; data available only via CD

    Magnetohydrodynamic stability of broad line region clouds

    Get PDF
    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilisation by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields should be present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few Gauss for a sample of Active Galactic Nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axi-symmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and column density instability lead to a filamentary fragmentation of the cloud. This radiative dispersion continues until the cloud is shredded down to the resolution level. For a helical magnetic field configuration, a much more stable cloud core survives with a stationary density histogram which takes the form of a power law. Our simulated clouds develop sub-Alfvenic internal motions on the level of a few hundred km/s.Comment: 16 pages, 11 figures, accepted by MNRAS, Figure 6 updated due to inconsistent linestyles, corrected mistake in Alfven speed formula, some very minor language corrections. The definitive version is available at www.blackwell- synergy.co

    LLAMA : stellar populations in the nuclei of ultra-hard X-ray-selected AGN and matched inactive galaxies

    Get PDF
    The relation between nuclear (.50 pc) star formation and nuclear galactic activity is still elusive; theoretical models predict a link between the two, but it is unclear whether active galactic nuclei (AGNs) should appear at the same time, before, or after nuclear star formation activity. We present a study of this relation in a complete, volume-limited sample of nine of the most luminous (log L14−195 keV > 1042.5 erg s−1 ) local AGNs (the LLAMA sample), including a sample of 18 inactive control galaxies (six star-forming; 12 passive) that are matched by Hubble type, stellar mass (9.5 . log M?/M . 10.5), inclination, and distance. This allows us to calibrate our methods on the control sample and perform a differential analysis between the AGN and control samples. We performed stellar population synthesis on VLT/X-shooter spectra in an aperture corresponding to a physical radius of ≈150 pc. We find young (.30 Myr) stellar populations in seven out of nine AGNs and in four out of six star-forming control galaxies. In the non-star-forming control population, in contrast, only two out of 12 galaxies show such a population. We further show that these young populations are not indicative of ongoing star formation, providing evidence for models that see AGN activity as a consequence of nuclear star formation. Based on the similar nuclear star formation histories of AGNs and star-forming control galaxies, we speculate that the latter may turn into the former for some fraction of their time. Under this assumption, and making use of the volume completeness of our sample, we infer that the AGN phase lasts for about 5% of the nuclear starburst phase

    Modelling Shear Flows with SPH and Grid Based Methods

    Get PDF
    Given the importance of shear flows for astrophysical gas dynamics, we study the evolution of the Kelvin-Helmholtz instability (KHI) analytically and numerically. We derive the dispersion relation for the two-dimensional KHI including viscous dissipation. The resulting expression for the growth rate is then used to estimate the intrinsic viscosity of four numerical schemes depending on code-specific as well as on physical parameters. Our set of numerical schemes includes the Tree-SPH code VINE, an alternative SPH formulation developed by Price (2008), and the finite-volume grid codes FLASH and PLUTO. In the first part, we explicitly demonstrate the effect of dissipation-inhibiting mechanisms such as the Balsara viscosity on the evolution of the KHI. With VINE, increasing density contrasts lead to a continuously increasing suppression of the KHI (with complete suppression from a contrast of 6:1 or higher). The alternative SPH formulation including an artificial thermal conductivity reproduces the analytically expected growth rates up to a density contrast of 10:1. The second part addresses the shear flow evolution with FLASH and PLUTO. Both codes result in a consistent non-viscous evolution (in the equal as well as in the different density case) in agreement with the analytical prediction. The viscous evolution studied with FLASH shows minor deviations from the analytical prediction.Comment: 16 pages, 17 figure

    Towards a physical model of dust tori in Active Galactic Nuclei

    Get PDF
    corecore