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ABSTRACT

Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line
region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the
supermassive black hole. If true, stabilization by thermal pressure alone becomes even more
difficult. We further argue that if magnetic fields are present in such clouds at a level that could
affect the stability properties, they need to be strong enough to compete with the radiation
pressure on the cloud. This would imply magnetic field values of a few gauss for a sample of
active galactic nuclei we draw from the literature.

We then investigate the effect of several magnetic configurations on cloud stability in ax-
isymmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which
provides the dominant pressure support, the cloud first gets compressed by the opposing ra-
diative and gravitational forces. The pressure inside the cloud then increases, and it expands
vertically. Kelvin—Helmbholtz and column density instabilities lead to a filamentary fragmen-
tation of the cloud. This radiative dispersion continues until the cloud is shredded down to
the resolution level. For a helical magnetic field configuration, a much more stable cloud
core survives with a stationary density histogram which takes the form of a power law. Our

simulated clouds develop sub-Alfvénic internal motions on the level of a few hundred kms~'.

Key words: hydrodynamics —radiative transfer — ISM: structure — galaxies: active — galaxies:

nuclei.

1 INTRODUCTION

Broad emission lines are produced in the immediate vicinity of op-
tically active supermassive black holes (SMBH; for reviews see e.g.
Osterbrock 1988; Peterson 1997; Netzer 2008). They may be used
to infer the black hole mass in galaxies with such an active galactic
nucleus (AGN; e.g. Bentz et al. 2009) and are a standard part of
optically active AGN. The basic line emitting entity is usually re-
ferred to as a cloud. The emission mechanism is photoionization by
the central parts of the accretion disc. Photoionization models pre-
dict the clouds to have a typical temperature of the order of 10* K,
number densities of n, = 10'° *! cm 3, sizes of R, = 102 *!' cm
and column densities of Ny > 2 x 10> cm~2 (e.g. Kwan & Krolik
1981; Ferland & Elitzur 1984; Rees, Netzer & Ferland 1989). Fur-
ther important constraints come from reverberation mapping (RM;
e.g. Peterson 1988, see below for a comparison of results of these
two methods). The complete physics of these clouds is however
highly complex and also involves pressure, radiative, centrifugal,
gravitational and magnetic forces, probably on a very similar level.

*E-mail: krause @mpe.mpg.de, mkrause @usm.lmu.de
tMax-Planck fellow.

We are not aware of any attempt to include all these processes into
a single model, but different authors have looked at some particular
aspects of the problem. A general assumption for the cloud en-
semble is often virial equilibrium. Since the gravitational potential
is dominated by the SMBH, this would imply Kepler orbits. This
treatment neglects the contribution of radiation pressure to the dy-
namics. The latter restriction has been relaxed in a recent series of
papers (Marconi et al. 2008, 2009; Netzer 2009; Netzer & Marziani
2010; Krause, Burkert & Schartmann 2011, hereafter Paper I).
The general finding is that the radiation force may contribute sig-
nificantly, and that in this case, the clouds on bound orbits could
be significantly sub-Keplerian. For low angular momentum (strong
radiation pressure support), the orbits have to be highly eccentric.
The importance of radiation pressure has actually been recog-
nized early on (e.g. Tarter & McKee 1973; Blumenthal & Mathews
1975, 1979; McKee & Tarter 1975; Mathews 1976). In fact, many
of the earlier papers study the possibility that radiation pressure is
dominant, also compared to gravity, and the clouds are unbound.
In this case, it would however not be easy to understand why the
black hole masses derived from RM under the assumption of virial
equilibrium may be brought into agreement with the correlation
between black hole mass and host galaxy properties with a uniform
scaling factor (Onken et al. 2004). For optically thin clouds, one
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would expect almost no response to the variability of the ionizing
continuum. The strong variability of the emission lines, preceded
by variations in the continuum, therefore provides evidence for the
presence of optically thick clouds (e.g. Snedden & Gaskell 2007).
However, the relative importance of gravity versus radiation pres-
sure is proportional to the optical thickness (compare equation 3,
below).

This opened up the possibility that the broad-line region (BLR)
is gravitationally bound and possibly disc-like with significant total
angular momentum. In fact, several pieces of evidence that point to
this direction have been found over recent years (compare Paper I
and references therein). One recent piece of evidence comes from
spectropolarimetry, where the BLR is spatially resolved by an equa-
torial scattering region, leading to different polarization angles in
the red and blue wings of emission lines (Smith et al. 2005). Most
recently, Kollatschny & Zetzl (2011) have shown that the shape of
the broad emission lines in many objects may be well fitted with
the assumption of a turbulent thick disc.

Cloud stability and confinement is a longstanding issue (see
Osterbrock & Mathews 1986 for a review). The clouds should be
in rough pressure equilibrium with their environment (e.g. Krolik,
McKee & Tarter 1981; Krolik 1988). To reach the required pressure
of p &~ 1072 dyne cm™?2, the intercloud medium needs either a high
temperature (>4 x 107 K; Krolik 1988) or a strong magnetic field
(Rees 1987). Apart from the confinement issue, the clouds should
be hydrodynamically unstable. Mathews (1982) showed that while
optically thin clouds may be close to uniformly accelerated by the
radiation pressure, there remain internal radial pressure imbalances,
which especially in the optically thick case, which is preferred by
photoionization models, lead to lateral expansion of the clouds. He
termed the latter state pancake clouds. Mathews (1986) then as-
sessed the hydrodynamic stability of such pancake clouds with the
result that the lateral edges of a pancake cloud are hydrodynami-
cally unstable. Hence, the lateral flows persist and destroy the cloud
on a short time-scale, comparable to one cloud orbit. Also, the ram
pressure by the intercloud gas, which is probably pressure supported
and moving in a different way than the clouds, may compress the
clouds in the direction of relative motion, and the increased pressure
makes the clouds expand sideways (Krolik 1988), now with regard
to the direction of motion. These problems have led to the idea that
clouds must reform or be re-injected steadily. Krolik (1988) devel-
oped the idea of cloud formation by the thermal instability from the
hot intercloud gas. This idea was however rejected by Mathews &
Doane (1990). It would require very large amplitude fluctuations of
unusual type (high density, low temperature). Additionally, a com-
pression by a factor of 10000 would require an unusually small
magnetic field for the magnetic pressure not to stop the collapse.
Mathews & Doane (1990) further argued that the clouds would
be destroyed by the radiative shear mechanism before they could
contribute to the emission line profiles. We have studied the radia-
tive shearing mechanism for dusty clouds in 2.5D hydrodynamic
simulations (Schartmann, Krause & Burkert 2011). In agreement
with Mathews (1986) and Mathews & Doane (1990), we find quick
radiative shearing of the cloud.

As mentioned above, the stability considerations were for clouds
accelerating due to the dominant radiation pressure. The problem is
even more severe for bound clouds where gravity is comparable to
the radiation force. The radiation force acts on the illuminated sur-
face of the cloud, while every part of the cloud is uniformly subjected
to gravity which must dominate by definition for bound clouds.
Such clouds are therefore compressed and must consequently be
stabilized by some internal pressure. Yet, radiation pressure and
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gravity act in one dimension, whereas thermal pressure is isotropic.
It is therefore not possible to stabilize illuminated bound clouds by
thermal pressure alone.

In this context, we investigate the stability of magnetized and
gravitationally bound BLR clouds — initially close to an equilib-
rium orbit as calculated in Paper I. Magnetic fields have so far
rarely been considered in BLR clouds. We therefore first review
literature data for indications on the relative magnitudes of gravi-
tational, magnetic and radiative forces (Section 2). We then focus
on the effect of the magnetic field and simulate the evolution of
irradiated magnetically dominated bound clouds. We study the 2D,
axisymmetric (2.5D), magnetohydrodynamic (MHD) evolution of
isolated, initially optically thick clouds, including gravity, rotation
and radial radiation pressure via a simple equilibrium photoion-
ization ansatz. We neglect self-gravity, viscosity and any radiation
source other than the central accretion disc. Because of the small
size of the clouds, our computational domain is small compared to
the full size of the BLR. We describe technical details in Section 3,
the setup details in Section 4, our results in Section 5 and discuss
our findings in Section 6. We summarize our results in Section 7.

2 MAGNETIC FIELDS, GRAVITY AND
RADIATION PRESSURE IN BLR CLOUDS -
INDICATIONS FROM THE LITERATURE

The typical pressure level imposed on the clouds by radiative and
gravitational forces may be calculated from RM data as follows.
For this analysis we convert all forces to pressures, dividing by the
surface area of the cloud, assumed to be spherical in this order of
magnitude analysis. The inward pressure due to gravity on the cloud
is given by

GMgumeq 1
PG =——>H

r? R, M
where Myy is the black hole mass, mq the mass of the cloud, r the
distance of the cloud from the black hole and R4 the radius of the
cloud. In current RM studies (e.g. Bentz et al. 2009), the black hole
mass is determined as a function of the measured quantities of the
centroid time lag 7. and the line dispersion of the rest-frame rms
spectra, .. Using these variables, the gravitational pressure on
the clouds may be expressed as
— i f& o2 )

PG = 3 CTeent PcldOlipe -
Here, p.q is the density of the clouds, and f = 5.5 is the correction
factor which ensures that RM-based black hole masses agree with
the Mgy —o, relation (Onken et al. 2004). We have collected ey
and o, from a number of RM studies where they were explicitly
stated (Table 1). Where available, we have included different mea-
surements of the same source at different epochs. From these data
we have calculated pg using R.jgpcq = 0.23 g cm™2 (corresponding
to a hydrogen column density of Ny = 10%* cm~2), which is plotted
against black hole mass in Fig. 1 (top). The values for R4 and pcia
are chosen to be in the range allowed from photoionization models
(compare Section 1). There seems to be no obvious correlation. The
mean of the gravitational pressure in the clouds is 3.63 dyne cm™2.
Because the distribution seems to be more uniform in log-space, we
use in the following the median value, which is 1.75 dyne cm~2, as
a characteristic number.

The ratio between radiation pressure and gravitational pressure
may be expressed as
DR 3 I Lin

= , 3
pc  167cG Reugpeaa Mu
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Table 1. RM data.

Object Teent ATcent b Oline A0 line d
(d) (d) (kms™h) (kms™!)
Bentz et al. (2009)
Mrk 142 2.74 0.75 859 102
SBS 1116+4583A 2.31 0.56 1528 184
Arp 151 3.99 0.59 1252 46
Mrk 1310 3.66 0.60 755 138
Mrk 202 3.05 1.43 659 65
NGC 4253 6.16 1.43 516 218
NGC 4748 5.55 1.92 657 91
NGC 5548 4.18 1.08 4270 292
NGC 6814 6.64 0.89 1610 108
Denney et al. (2009)
NGC 4051 1.87 0.52 927 64
Grier et al. (2008)
PG 2130+099 22.9 4.7 1246 222
Denney et al. (2006)
NGC 4593 3.73 0.75 1561 55
Bentz et al. (2007)
NGC 55438 6.3 2.5 2939 768
Bentz et al. (2006)
NGC 5548 6.6 1.0 2680 64
Peterson et al. (2004)
Mrk 335 16.8 4.4 917 52
Mrk 335 12.5 6.1 948 113
PG 0026+129 98.1 26.9 1961 135
PG 0026+129 111.0 26.2 1773 285
PG 0052+251 163.7 48.4 1913 85
PG 0052+251 89.8 24.3 1783 86
PG 0052+251 81.6 17.7 2230 502
Fairall 9 17.4 3.8 3787 197
Fairall 9 29.6 13.7 3201 285
Fairall 9 11.9 5.7 4120 308

“Centroid time lag.

bError on centroid time lag.

“Line dispersion, rest-frame rms spectra.
Error on line dispersion.

where L, is that part of the AGN light that is absorbed by the cloud.
It is given by (e.g. Marconi et al. 2008) L;,, = abcLsy 9, Where a =
0.6 is the ionizing fraction of the bolometric luminosity, b = 9 is
the bolometric correction and Ls;o represents AL; at 5100 A.

The factor ¢ accounts for geometrical and relativistic effects.
Sun & Malkan (1989) have shown that for frequencies up to about
v = 10" Hz, the angular radiation pattern of thin accretion discs
around fast rotating black holes follows the classical cosf law
(Lambert’s law). For v > 10'® Hz, the emission is close to isotropic.
For Schwarzschild black holes, the transition occurs at somewhat
higher frequencies. Luminous AGN emit most of their energy in
the innermost regions of the accretion disc, in the blue—ultraviolet
part of the spectrum (so-called big blue bump), with a peak around
v, =2 x 10" Hz (e.g. Hopkins, Richards & Hernquist 2007). If
Lambert’s law applies and if the BLR extends 20° above and below
the equatorial plane, which means that about 10 per cent of the
AGN’s radiation would be intercepted, ¢ would average to 0.3. For
more rapidly spinning black holes or accretion discs emitting at
higher frequencies, ¢ might become as large as unity. Also, if the
BLR is not located in the equatorial plane of the accretion disc,
¢ would tend towards unity. Here, we adopt ¢ = 1 as a possible,
reasonable value.
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Figure 1. Radial pressure on BLR clouds. Top: inward pressure due to
gravity over black hole mass (data of Table 1). Bottom: ratio of radiative
to gravitational pressure (all 35 objects of Peterson et al. 2004). Different
samples have been used for each plot according to the availability of the data.
Error bars are propagated from the original publications (compare Table 1).
Additionally, an error of 80per cent on the assumed column density has
been included. See the text for details.

For these assumptions, we have calculated the pressure ratio for
the sample of Peterson et al. (2004, their complete table 8). We
have used this sample, because black hole masses determined in the
same way as for the sample above as well as continuum luminosities
were available. We show a plot of the derived pressure ratios against
black hole masses in Fig. 1 (bottom). There is again no obvious cor-
relation. The mean ratio of radiation to gravitational pressure is
0.74. Here, the distribution is also more uniform in log-space, and
therefore again we use the median of the pressure ratios as a char-
acteristic number, which is 0.48. These numbers depend of course
crucially on the assumed column density. Photoionization calcula-
tions constrain the column density to N > 2 x 10*2 cm~2 (Kwan &
Krolik 1981). We have used values for Rq and pgq corresponding
to a (hydrogen) column density of N = 10?* cm~2, consistent with
the requirement from RM studies that the clouds need to be optically
thick (compare Section 1, above). Allowing for the smallest column
density consistent with the calculations of Kwan & Krolik (1981)
would shift the median of the pressure ratio to 2.39, with only 6
of 35 values still below unity. However, Maiolino et al. (2010) and
Risaliti et al. (2011) have possibly observed BLR clouds in X-ray
absorption and give values of a few times 10?* for the column of
their clouds. With such a column density, the typical pressure ratio
would clearly drop below unity. We have included a contribution
of 80 per cent due to the uncertainties in the column density for
the calculation of the error bars in Fig. 1. Another uncertainty is
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due to the accuracy of the black hole masses. As an indication,
the errors stated by Bentz et al. (2009, their table 13) are 43 per
cent. Additionally, there may be a systematic error via f (Onken
et al. 2004) and possibly corrections to radiation pressure (Marconi
et al. 2008, 2009). Because the pressure ratio values we find scat-
ter around unity (Fig. 1), it is thus not possible to firmly conclude
if the BLRs are typically gravitationally bound or otherwise. It is
however remarkable that the pressure ratio distribution is bounded
by a value close to unity for reasonable assumptions. In any case,
gravitationally bound cloud models are clearly consistent with the
data.

The typical radiation pressure on BLR clouds is given by the
characteristic gravitational pressure times the typical pressure ratio,
and using the fiducial numbers derived above,

Pr = 0.84dynecm 2. )

This number exceeds the upper bound for the thermal pressure
derived from standard photoionization models (compare above) by
a factor of a few. It is therefore non-negligible. Even if one takes
the lower bounds of the distributions of pg and pr/pg, the resulting
radiation pressure is well within the range of inferred values for the
thermal pressure.

The fact that the RM results imply small BLR radii and there-
fore high radiative fluxes has already been noted by several authors
(Peterson 1988; Ferland et al. 1992; Leighly & Casebeer 2007). It
would seem to imply that the photoionization parameter is high.
Adopting E = 2.3pr/pr as the photoionization parameter (Krolik
etal. 1981), we arrive at a characteristic value of 8 = 14, taking the
upper bound of the thermal pressure from the photoionization mod-
els, and 10 times higher for the central value. Krolik et al. (1981)
point out two arguments to constrain E. First, pressure balance with
a surrounding hot phase implies 1/3 < E < 10. Secondly, fitting
the line ratios requires 0.3 < E < 2 (Kwan & Krolik 1981). Ad-
ditionally, very high ionization parameters lead of course to highly
ionized gas, which would be unable to produce the observed emis-
sion lines. Yet, the uncertainties in the column density, geometrical
and relativistic correction factors, and black hole masses are con-
siderable. Thus, while the ratio of radiation pressure to thermal
pressure comes out a little high, which might point e.g. to a lower
value of our factor ¢ (compare above) or cloud densities which are
generally around 10'! cm™3, the data still seem to be consistent.

In summary, the data suggest that gravitational and radiation
pressure are both important and at least comparable to the thermal
pressure. Gravitationally bound clouds are consistent with all the
available data.

We have argued above that thermal pressure due to its isotropic
nature may not stabilize the cloud against the unidirectional op-
posing forces due to gravity and radiation. Magnetic forces are not
isotropic. Their direction depends on the geometry of the magnetic
field. It is therefore natural to ask if a magnetic field configura-
tion may be found that is able to support an illuminated bound
cloud. If the magnetic field is at all capable to contribute, its en-
ergy density should be at least comparable to the radiation pressure.
Both magnetic pressure and magnetic tension are of the same order
of magnitude as the magnetic energy density for many not highly
symmetric configurations. Accordingly, the magnetic field strength
required for the magnetic energy density to match our reference
radiation pressure (equation 4) is 5 G. Taking into account the ac-
curacy of the measurements, as well as the width of the distribution
of pressures (Fig. 1), the true indicative value for any given BLR
should be within a factor of 10 of this number.
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Guided by these considerations, we make the following assump-
tions for our MHD stability analysis.

(i) The clouds are gravitationally bound.

(i) The magnitude of the radiation pressure is significant com-
pared to gravity.

(iii) The magnetic pressure is at least comparable to the radiation
pressure.

(iv) The thermal pressure of the cloud is much smaller than both
the radiation pressure and the magnetic pressure.

The last assumption is mainly for methodological reasons in order to
isolate the effects of the magnetic field. In the following we present
MHD simulations of clouds set up according to the standard cloud
properties outlined in Section 1, and the above assumptions, and
investigate their stability numerically.

3 NUMERICAL MODEL

The basic code we use is the 3D MHD code Nrvana (Ziegler &
Yorke 1997). For short, it conserves mass, momentum and inter-
nal energy in the advection step, interpolates the fluxes with van
Leer’s formula (van Leer 1977, second-order accurate) and uses the
constrained transport method to keep the magnetic field divergence
free.

In order to include the effects of photoionization and electron
scattering, we augmented the MHD equations by an equation for
the radial radiative transfer for the photon flux S:

oS
or
where the first term on the right-hand side is due to photoionization,
and the second one describes the geometrical effect and electron

scattering, with the Thomson cross-section o1. In equilibrium, the
ionization rate 7y is given by the number of recombinations:

2
= —hyy — (;—f—amx) S, &)

g = Olrec(nx)z s (6)

where n is the total number density of ionized and neutral hydro-
gen atoms. We assume a recombination coefficient of oree = 5 X
107 cm®s™! (e.g. Dopita & Sutherland 2003), kept constant for
simplicity. The ionization fraction x is given by

Ophot S

aTCCn
y )2
=2 4 <7) +y. 3
X 2 2 y (3
We assume a photoionization cross-section of ophyy = 6.3 x

107'8/(a + 3.5) cm?, averaged over a spectrum v™¢ with o = 2.
This leads to a local radiative acceleration of

Graa = (Au1 + xnorS)hv/pc, )

where p denotes the mass density and ¢ the speed of light. We as-
sume an average photon energy 4 ¥ = 1.0074 vy, with the hydrogen
ionization potential 7 vy = 13.6 eV, for a steeply falling spectrum.
Radiative heating is not taken into account explicitly. We set how-
ever a lower limit to radiative cooling at 1000 K, which implies a
heat term that balances cooling in such a way as to reach the min-
imum temperature. We do not attempt to model the temperatures
within the clouds correctly. This is justified, because we study the
evolution of magnetically dominated clouds, and even if photoion-
ization heating was taken into account, the thermal pressure would
remain negligible in our setup. We set the minimum temperature be-
low the one expected from photoionization equilibrium in order to
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Table 2. Simulation parameters.

Label Comment Fin®  row? A A Ruq® nt ng s srh Vi
R34 eq-cld 9100 9250 32 92 3 750 460 0.2 85
R35 neg-cld 9120 9320 32 93 3 1000 460 0.2 85
R36 R34-hires 9100 9250 32 92 3 1500 920 0.1 85
R47 R34-big-cld 9000 9300 64 188 6 750 460 04 94
R60 helical 9150 9250 32 92 3 1000 920 0.1 85
R61 helical-hires 9150 9250 32 92 3 1500 1380 0.067 85
R62 helical-lores 9150 9250 32 92 3 500 460 02 85
R63 helical-big 9100 9300 64 188 3 2000 1840 0.1 85

“Inner boundary of the computational domain in the r direction in ppc. Note that the origin is not

within the computational domain.

bQuter boundary of the computational domain in the  direction in upc.
“Size of computational domain in the 6 direction, symmetrical above and below the equator in

units of 10747z,

dCorresponding approximate domain size in the vertical direction in ppc.

¢Radius of the cloud in ppc.

/Number of cells in the radial direction.
&Number of cells in the meridional direction.
hUniform resolution in ppc/cell.

fnitial cloud orbital velocity as a fraction of the Kepler velocity in per cent.

investigate if shock heating can also heat the clouds to a temperature
comparable to the photoionization temperature.

Equilibrium photoionization is a good assumption, because the
ionization front would pass the clouds quickly (< hour), and the
thermal pressure imbalance induced by the passing of the ioniza-
tion front would be insignificant compared to the magnetic pres-
sure. The clouds we consider below are about half-way ionized.
Thomson scattering dominates in the intercloud gas, hydrogen pho-
toionization within the clouds, which also have a still significant
contribution by Thomson scattering. This model was chosen with
the aim of being as simple as possible while capturing the essential
physics (we are interested in the radiative acceleration). We vary the
parameters within reasonable limits without a qualitative change in
the results. We adopt an equilibrium solar metallicity cooling curve
(Sutherland & Dopita 1993), extrapolated to lower temperatures as
described in Krause & Alexander (2007). Finally, we take into ac-
count the gravitational acceleration g due to a central point source
(the SMBH).

These effects are implemented as source terms into the system of
MHD equations:

% v (pr)=0 (10)
_ . V) =
ot P
90 | G (pvw) = —Vp+ - (B-V)B — VB
Y o vy = — e wvp_ L
ot P P 47 87t
+Io(arz\d - g) (11)
Oe
E—i—V-(ev):—pr)—C (12)
OB
§=Vx(va), (13)

where p denotes the density, e the internal energy density, v the
velocity, C the radiative cooling and p = (y — 1)e the pressure.
The problem we are trying to address here has some particular re-
quirements. We have verified that angular momentum is conserved
to high accuracy during our simulation runs. Krause & Alexander
(2007) have shown that energy is conserved well in multiphase se-
tups up to density contrasts of about 107. Also in the simulations

presented here, we have checked that the total energy is reason-
ably well conserved. We are however limited in density contrast to
about 10*.

4 SIMULATION SETUP

We simulate isolated clouds in axisymmetry. The initial geometry
is toroidal with a circular shape in the meridional section. The basic
simulation parameters are typical for BLRs and are summarized in
Table 2. The cloud is always positioned at a distance of 9200 upc!
from the central SMBH. We resolve the cloud diameter of 6 1pc with
30 cells in standard runs and up to 90 cells in the highest resolution
ones. We set the initial cloud density to 4 x 10'%m, cm™, where
my, is the proton mass. This results in a central hydrogen column
density of 5 x 10?* cm™2, except for run R47, which has twice this
value.

The setup follows essentially the scenario of Paper I. We assume
a hot atmosphere in approximate hydrostatic equilibrium, where the
pressure follows a power law p(x) = pox™* with x = r/rqq and s =
2. Here, r.q denotes the radial position of the cloud (distance from
the SMBH) and pyp = GMpupo(1 — T')/rqqs is what the intercloud
thermal pressure would be at that location, with py = 108m, cm™
and the Eddington factor I' = 0.1 (/ in Paper I). Here, we take ra-
diation pressure due to Thomson scattering into account. G is the
gravitational constant and Mpy the black hole mass, which is gener-
ally assumed to be 108 M. The density is given by p(r) = pox' ~*.
The magnetic field (compare below) in the intercloud medium is
perpendicular to the computational domain and contributes initially
about 10 per cent to the total pressure, above hydrostatic equilib-
rium. Yet, because of the cooling the atmosphere still develops an
inward flow over the simulation time.

The pressure level might appear high, yielding an intercloud tem-
perature of the order of 10° K. This is however necessary since we
would like to test here the effect of dynamically relevant magnetic
fields primarily inside the clouds. In order to yield a smaller thermal
intercloud pressure, and therefore a temperature of the order of the

11070 parsec.
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Compton temperature, which one might expect, one would have
to assume a much stronger magnetic field also in the intercloud
medium. We defer the investigation of this situation to future work.

According to Paper I, force equilibrium is reached for the cloud,
if the rotational velocity in Kepler units is given by

ar
20'TN ’

where N = 2Rqpc1a/mp is a measure of the column density of the
cloud. In Paper I, we have found that for high column densities,
the clouds should be in a minimum of the effective potential, and
therefore remain stable at their radial position. For low column
densities, the clouds should be either ejected or sent inwards on an
eccentric orbit. For our pressure profile, the critical rotation velocity
is 75 per cent of the Kepler velocity.> All our clouds are set up on the
stable branch of the equilibrium curve (compare Table 2). We found
experimentally that we require a rotational velocity of 102 per cent
of the value given in equation (14) to ensure initial force equilibrium.
The difference is due to the small amount of Thomson scattering
in the ambient medium on the way to the cloud, which reduces the
amount of radiation that actually arrives at the cloud.

For runs R34, R36 and R47, we use an azimuthal magnetic field
only. The plasma 8 = 8mp/B? is initially set to 10 outside the
cloud. Inside the cloud, we set the temperature to the minimum one
(1000 K) and adjust the azimuthal magnetic field to yield pressure
balance. This results in a magnetic field about three times stronger
than that in the intercloud medium and a 8 = 10~*. Run R35
uses uniform field strength inside and outside the cloud again with
B = 10 in the intercloud medium. This cloud is therefore initially
underpressured. Runs R60, R61, R62 and R63 have an additional
poloidal field (in the cloud only). We have again § = 10 in the
intercloud medium. Within the cloud, the azimuthal field declines
with distance from the cloud centre as a Gaussian:

2
Vi=1- (14)

By = Byi(1 4+ 3exp(—10R*/R%)), (15)

where B, ;. is the azimuthal intercloud field and R refers to the
distance from the cloud centre. R4 is the cloud radius. The poloidal
field is set up as a closed field loop in a given meridional plane. The
3D structure would be helical. We initialize the radial component
by

Arcld 0

B, = 2 B, sing. 16
rsing 09 ¢ (16)

We have tried different values for «. The one we report here is
a =2 x 1073, For this case, the initial peak values of the toroidal
and poloidal field components are 103 and 15 G, respectively. The
magnetic field strength for all runs is generally around 30 G (the
larger initial field in the runs with helical magnetic field decays
quickly to this value) to ensure magnetically dominated clouds,
following the considerations in Section 2.

All boundary conditions are set to zero gradient for all variables.
We believe that the best test for our radiation pressure module
is the approximate stability of the hydrostatic halo, as mentioned
above. We have also checked 1D cloud acceleration without gravity
(Fig. 2). In this test, the cloud accelerates a bit more slowly than
that expected from simple radiative acceleration of an optically thick
cloud. This is because the cloud also has to work against the ram
pressure of the ambient medium.

2 Note that equation 6 of Paper I has a mistake. The correct formula for the
critical rotation velocity should read VC2 = (1 +3/25)7", with the pressure
power-law index s = 2 in our case.
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Figure 2. Radial position of the centre of mass of a 1D test cloud (green,
plus symbols) over time compared to the analytic prediction (solid black
line) for an optically thick cloud.

5 RESULTS

5.1 General dynamics

A general overview of the evolution of our simulated magnetized
clouds is shown in Figs 3-5. Movies are provided with the online
version; see supporting information.

5.1.1 Pressure equilibrium

We first describe the evolution for run R34 (Fig. 3), set up in initial
total pressure equilibrium with an azimuthal magnetic field only.
The cloud is stationary at its radial position due to the matched
radiative and centrifugal forces on one hand and the gravitational
force on the other hand. This leads to a radial compression of the
cloud [10.93 morb (= milli-orbits)]. At the same time, the mag-
netic pressure in the cloud increases. As there is no opposing force
vertically, the cloud expands upwards and downwards, much like
an open tube of toothpaste squeezed in the middle. This evolution
matches the picture that Mathews (1982) described as the formation
of quasar pancakes. Towards the edges of the cloud, the column
density is lower, and therefore, there is a net outward force. This can
be clearly identified in the 10.93 morb density plot. However, on
the very edge, there is a certain amount of mixing. This will always
happen to some extent, as the contact surface generally has to be
resolved by a few grid cells. Wherever the cloud gas mixes with the
ambient gas, the cloud loses rotational support and falls inwards.
There is also some drag due to the inflow of the cooling ambient gas.
A Rayleigh—Taylor instability due to the initial cloud acceleration
is clearly seen in the middle of the cloud. The cloud continues to
expand vertically by the tube of toothpaste mechanism, with lower
column density regions being pushed outwards and mixing regions
coming back inwards. By 40.08 morb, the cloud has dispersed into
three major fragments with lower density (mixed) filaments falling
inwards. The Kelvin—Helmholtz time-scale (Chandrasekhar 1961)
is comparable to the evolution time:

TkH = lmonthuipc (ﬁ)qﬂ (7200kl;ns—' )_l , a7

where X is the wavelength, n the density ratio and v the shear ve-
locity. As expected, some filaments show the typical rolls of the
Kelvin—-Helmbholtz instability. In the final snapshot (54.66 morb),
all of the cloud material has mixed with the ambient gas to some
degree, and falls leftwards, towards the SMBH. Mixing is a reso-
lution effect in our simulations, but would also happen in reality
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Figure 3. Evolution of run R34. The top six images show the logarithm of the density for different snapshot times, indicated in milli-orbits (morb) and months
on the individual images. The bottom three images show for the final snapshot from left to right: total pressure, magnetic field strength and magnetosonic Mach
number for the velocity component in the meridional plane. In the cold cloud gas, the magnetosonic speed is almost the same as the Alfvén speed.

at scales below our resolution. The mixing is further illustrated in
the density histograms, which we show for similar snapshot times
in Fig. 6. Between ¢ = 30.36 morb and the final snapshot r =
54.66 morb, the upper density cutoff drops by about a factor of
5, indicating that the last cloudlet cores have been destroyed by
mixing. Consequently, at this time, we also observe the cloud com-
plex to start falling inwards as a whole. During the whole evolution
time the entire simulated region stays well in pressure equilibrium
(Fig. 3, bottom-left), the typical deviation being within 10 per cent.
Also, the magnetic field in the cloud complex remains close to its
initial value of 31 G (Fig. 3, bottom-middle). Acceleration is medi-
ated by the compression of the magnetic field. We therefore expect
the velocities to be limited by the Alfvén speed, ¢, = B/ /4mp =
500 km s~ in the cloud and ~6000 kms~! in the ambient gas. In-
deed, the observed velocities in the filaments are typically around

30 per cent of the Alfvén speed (Fig. 3, bottom-right; we use the
magnetosonic speed in the figures to show that in the intercloud gas
also, the velocities remain sub-magnetosonic).

5.1.2 Underpressured cloud

We check the dependence on the initial condition in run R35 (Fig. 4).
Here the field strength is not higher inside the cloud, but set to the
same value as in the ambient medium at the corresponding radius.
The latter is still kept at § = 10. Also, everything else is as in
run R34. Now, the cloud is first compressed isotropically due to
the initial underpressure before the radial (with respect to the black
hole) compression phase. It overshoots and oscillates in size a few
times. The acceleration produces Rayleigh—Taylor instabilities on
the cloud surface (¢ = 4.82 morb). Then, the cloud gets compressed
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Figure 4. Same as Fig. 3, but for run R35.

anisotropically in the radial (with respect to the black hole) direc-
tion (r = 7.23 morb) and suffers a similar filamentation process to
that in run R34, above (# = 9.64 and 19.29 morb). This initial phase
proceeds significantly faster than for R34. Between ¢ = 19.29 and
37.37 morb, the remaining dense cloudlet cores are dispersed (com-
pare Fig. 6), and at = 37.37 morb, the cloud is infalling towards

© 2012 The Authors, MNRAS 425, 3172-3187
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the SMBH. The cloud, and respectively its fragments, is quickly
compressed to the equilibrium magnetic field of 31 G, gets quite
close to pressure equilibrium and acquires velocities of about 30 per
cent of the magnetosonic speed (Fig. 4, bottom plots). Thus, with
the exception of the initial phase, the evolution is very similar to the
one of run R34.
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© 2012 The Authors, MNRAS 425, 3172-3187

Monthly Notices of the Royal Astronomical Society © 2012 RAS



R34: density histograms

10F T E|
oF E
ER El

2 PN E

~ 8 ;7 1y N 7;
x £ . \ = E
S v \._ t=230.36 =000 E
SIS (AN TR E
3 E A R T El
o E t=1822 7’V AT A E
° £ ! 3

6 ||
|
I
50
I
4E. I
-16 -15 -14 13 12
log (density / g cm”)
R36: density histograms
10 I L D
9
\ /'\: 54.
b t = 0.00

log (upc’ dex’)
<

n

log (density / g cm”)

MHD stability of BLR clouds 3181

R35: density histograms
10 T T T

3
TR =
So_ L % t=30.14 t=000
t=18.08"- " >

w~

log (upc’ dex”)
.

(=]
'
-
o
'
-
IS
'
-
(%]
'
-
N

log (density / g cm”)

R63: density histograms

10

log (upc’ dex’)
N

(2]

-15 14 13
log (density / g cm”)

o
n

Figure 6. Density histograms for various runs, indicated in the individual titles and snapshot times (order: solid black, dotted blue, dashed turquoise, double
dot—dashed green, dashed red, solid orange), indicated in milli-orbits (morb) next to the respective lines. Mixing generally moves the upper density cutoff
towards lower density (leftwards) for later times. The exception is run R63 for which the histogram converges at ¢ & 9 morb and also continuously extends

towards densities higher than the initial cloud density.

5.1.3 Cloud with a helical field

A significantly different result is obtained for a cloud with a heli-
cal magnetic field (R63, Fig. 5). The cloud is initially not in force
equilibrium and first oscillates in size a few times. Similar to run
R35, this has caused some filaments by # = 3.02 morb. These fila-
ments spread and disperse in much the same way as for the other
runs. However, in contrast to the other runs, the cloud core re-
mains remarkably stable and is not significantly compressed by
the radiative, centrifugal and gravitational forces. This situation re-
mains essentially unchanged until the end of the simulation (r =
43.55 morb), which we generally take to be the latest time before a
significant amount of cloud gas has left the grid. The final equilib-
rium is characterized by a total overpressure of a factor of 1.3 in the
cloud core, balanced by the magnetic tension force (Fig. 5, bottom-
left). In the outer filaments, the magnetic field is of a very similar
magnitude to the other simulations. It is about 10 per cent higher in
the cloud core. The velocities are typically about 60 per cent of the
magnetosonic speed, only slightly higher than in the previous sim-
ulations and still sub-magnetosonic. Also, the density histograms
(Fig. 6) are distinctly different from the previous runs. Whereas the
histograms for the runs without a poloidal field component did not
converge with time, with the upper density cutoff moving to lower
densities at the end of the simulation, the density histograms for run
R63 stay essentially constant from at least # = 24 morb up to the
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end of the simulation at = 44 morb, which corresponds to almost
half of the simulation time. The occupied volume is roughly given
by

dv
xp !, (18)

dlogp

and also extends to densities exceeding the initial cloud density by
a factor of 10.

Close-ups of the cloud core at the beginning and at the end of
the simulation are shown in Fig. 7. The cloud has essentially the
same size as in the beginning. The density is however no longer
homogeneous but displays a round filamentary pattern, following
the cloud surface. The magnetic field geometry is essentially iden-
tical to the one of the initial condition: a dominantly azimuthal core
with a helix winding around. The peak value of the azimuthal field
has however reduced by a factor of 3, whereas the poloidal field
strength remained almost unchanged.

Interestingly, many of the filaments that the cloud sheds are es-
sentially devoid of poloidal field. Due to the solenoidal condition,
filaments shed by the cloud need to have a bidirectional magnetic
field. We have observed this at the 0.1 G level near the cloud surface.
But since they are often at the resolution limit, the poloidal field
tends to cancel numerically, while the toroidal one is unaffected by
this. Without poloidal field in the filaments, they disperse much like
the filaments in the other simulations. Yet, sometimes filaments are
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Figure 7. Close-up of the cloud core of run R63 at the beginning (top row) and at the end (bottom row) of the simulation. The logarithm of the density is
shown on the left, the azimuthal magnetic field in the middle and the magnitude of the poloidal field with overlaid poloidal field vectors on the right. The
coordinates are relative to the initial cloud centre. The slight upward shift at the end of the simulation is due to an interaction with the boundary, which defines

the end of the simulation.

shed which are thick enough to keep their poloidal field. Two such
examples are presented in Fig. 7. Interestingly, they also adopt the
field geometry of the parent cloud. This indicates that we may have
found a magnetic field configuration for such clouds. It is clear that
a poloidal field stabilizes the cloud significantly.

5.2 Resolution dependence

We have resimulated R34 at twice the spatial resolution (R36, Fig. 8,
middle). The evolution is quite similar to run R34, with the exception
that the dispersion of the cloud and cloudlets happens faster. This
may be seen from the more uniform appearance of the density
distributions (Fig. 8) but also from the density histograms (Fig. 6),
which are shown at the same time-steps. While the histograms at the
corresponding times are generally very similar, the density cutoffs
at t = 54.66 morb difter by about 0.2 dex. Thus, the simulation can
be regarded as overall numerically converged, but there is increased
turbulent mixing at small scales for increasing resolution.

We have also studied the resolution dependence for run R63. For
this study, we have used a smaller grid, because we have found
that the reflection of sound waves at the grid boundaries somewhat
influences the motion of the filaments. R60 is the resimulation of
R63 at the same resolution. R62 uses 50 per cent less cells on a side,
and R61 has 50 per cent more cells on a side. Logarithmic density

plots of all three runs at # = 48.58 morb are shown in Fig. 9. The
filamentary systems are in general quite similar, though they have
of course a finer structure at higher resolution. Yet, their extent and
therefore kinematics is similar. The cloud core has drifted outwards
slightly for the two higher resolution runs. It is less dense and
moving inwards for the low-resolution run. The resolution in this
case is not enough to resolve the cloud core structure, and therefore
the clouds disperse faster. This is also evident from the density
histograms (Fig. 10). The low-resolution run lacks cloud material
at high densities, which the two higher resolution clouds do show.
It is interesting that this is in a way opposite to the case without
poloidal field. There, higher resolution had made the cloud disperse
quicker. Here, high resolution is essential to preserve the cloud
core at high density. Our results are thus robust under resolution
changes.

5.3 Scaling with cloud size

The simulations are not scalable, as the source terms introduce a
dimensional scale to the problem. In order to explore the scaling
behaviour, we resimulated run R34 with all scales doubled (R47;
Fig. 8, right). As expected, the evolution now takes longer, but
not nearly twice as long as for run R34. Otherwise, we find a very
similar behaviour. Again, the cloud is first compressed radially, then
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Figure 10. Density histograms for runs R60 (solid black), R61 (dotted yel-
low, 50 per cent higher resolution) and R62 (dashed green, half-resolution)
at 48.58 morb. The high density part disappears at low resolution.

expands vertically by the tube of toothpaste mechanism, disperses
into a filamentary system and then moves inwards due to the mixing-
related loss of rotational support and drag by the cooling infalling
ambient gas.
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5.4 Turbulent velocities

We define the mass-weighted root-mean-square poloidal velocity
(rms velocity) by

2 Zm dm (vP - I_)P)z

_ 19
Urms Z m dm ( )
_ > dmu,

— m R 20
K S e

with the poloidal velocity vector vy,.

The dependence of v, on time is shown for all runs in Fig. 11.
The clouds set up in pressure equilibrium first show a shallow rise
and then stay roughly constant. From the density histograms (Fig. 6),
the acceleration decreases when the densest cores are completely
shredded. Hence, it seems that kinetic energy can be generated as
long as dense cloud material can be squeezed radially and pushed
out vertically. Since run R36 has a higher resolution than run R34,
the gas may be compressed further. More energy is therefore stored
temporarily in the magnetic field, which ultimately results in higher
velocities. Run R47 has twice the spatial scales but is otherwise
identical to run R34. The net force per unit volume has not changed.
Since the initial densities are the same, the accelerations in each
cell are also the same. Therefore, the turbulent velocities increase
in a very similar way up to about 35 morb. Since the velocities
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Figure 11. Mass-weighted rms velocities for runs R34 (black plus signs),
R35 (blue stars), R36 (green squares), R47 (red diamonds) and R63 (orange
triangles) over time. Only the poloidal velocity component is taken into
account.

are the same, but the length scale is twice as long in run R47,
there is still room for more compression in simulation R47 at this
time. Consequently, the turbulent velocity increases further until
the resolution limit is reached near 57 morb. One may understand
the final turbulent velocity in terms of the total available space for
compression. The gravitational and centrifugal forces act at similar
strength in every cloud cell. The radiative force is concentrated on
the illuminated surface. The net compression force is roughly F =
(1 — V?)Fg, where V is the initial rotation velocity of the cloud in
Kepler units. The total energy transferred to the cloud in the limit
of complete linear compression would therefore be

1-v?

Ecomp = TFG R , (21)

where the numerical factor is due to the average cloud thickness
of TR 4/2. If this energy is completely used for accelerating the
cloud, a turbulent velocity of

GM 1/2
(7'5(1 — V»)Rag fBH)
Tl

115 kms—! Mgy \'? Teld R\
108M@ 9200 ppe 3upc/) (22)

would result for V = 0.85. As may be seen from Fig. 11, the
velocities are somewhat higher than this estimate. This is likely due
to the increased radiative force during the lateral expansion of the
clouds.

The clouds not set up in pressure equilibrium (R35 and R63)
suffer initially a very quick increase in the rms velocity, as might
have been expected. They evolve quickly towards pressure equilib-
rium. Then, as in the initial pressure equilibrium runs, the turbulent
velocities change only gradually. Several curves show an upturn
towards the end, which is due to the beginning interaction with the
grid boundary.

Ut,c

6 DISCUSSION

We have investigated whether magnetic fields can contribute to the
stability of BLR clouds. Stability is an issue in models without
magnetic fields (compare Section 1). We first combine literature
data to get an idea of the magnitude of magnetic and other forces
that might be relevant in this context. We find that RM data are

consistent with the bound cloud picture for a reasonable column
density. Yet, the forces of radiation and gravity are comparable. We
argue that the magnetic energy density, which sets the magnitude
of the magnetic pressure and tension forces, should be at least of
the same order of magnitude as the radiation pressure in order to
be at all able to contribute to the stability of the cloud. Estimating
these parameters from the literature turned out to be complicated
by the fact that the flux of radiation inferred via RM studies leads to
a rather high photoionization parameter. One could take this as an
indication that there are no clouds at all, and cloudless models like
the one of Murray et al. (1995) should be preferred. Yet, for cloud
densities on the high side of the allowed values, which would also
mean that the typical BLRs would more likely be gravitationally
bound, or when adopting other changes of the relevant parameters
within the range allowed by the uncertainties, the photoionization
parameter may be brought down to a reasonable value.

A gravitationally bound cloud model entails the problem that the
radiation leads to a surface force, whereas gravity and centrifugal
forces are body forces. Hence, an equilibrium configuration with
these forces alone may not be found for the aforementioned as-
sumptions. As all these forces act only radially away or towards the
SMBH, isotropic thermal pressure that was to stabilize the cloud
against the compressive forces would necessarily also cause lat-
eral expansion. Magnetic forces are anisotropic and are therefore,
in principal, suited to counteract the compression and stabilize the
clouds. We have performed MHD simulations with different mag-
netic field configurations to test this idea.

With an azimuthal magnetic field only, the dynamics is dominated
by the open tube of toothpaste mechanism: radial compression is
followed by vertical expansion. Kelvin—-Helmholtz and column den-
sity instabilities together with repeated, but smaller, tube of tooth-
paste squeezing events transform the initially homogeneous cloud
quickly into a filamentary system. This result is in good agreement
with the unstable pancake picture (Mathews 1982, 1986). In fact,
in this case the effect of the magnetic field is just an additional
pressure. Hence, the result remains essentially the same as in the
pure hydrodynamic case. The cloud fragments are shredded down
to the resolution level. Mixing with the pressure-supported ambient
gas reduces the rotational support, and the clouds fall inwards. Ad-
ditionally, the atmosphere is not entirely stable and features some
inward flow due to the cooling. The time-scale for this process is
first given by the cloud compression time-scale:

f 4R i
c ((1 - v2>g/2)

Mgy \ 7 Teld Raa \'?
4 months s
108Mg 9200 upe / \ 3upe (23)

where g is the gravitational acceleration, and the evaluation is again
for an initial rotation velocity V = 0.85. Our numerical simula-
tions show that clouds with an azimuthal magnetic field only are
dispersed to the resolution level, and hence rapidly dissolve in the
ambient medium within about z., which is also similar to the Kelvin—
Helmholtz time-scale for the simulated cases. We show that the dis-
persal is even faster for higher resolution. The mixing, on the other
hand, depends on the ambient density via the Kelvin—Helmholtz
time-scale. It is therefore expected to be slower for lower ambient
densities. Not much is known about the density in the intercloud gas.
Assuming that the density would be lower by a factor of 10* would
increase the Kelvin—Helmholtz time-scale by a factor of 100 to the
range of the orbital time-scale. This would lead to extremely spread-
out pancake clouds, similar to the ones envisaged by Mathews
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(1986). We have also tried a factor of 10 lower intercloud density
than reported here. In this case, the cloud spreads quite quickly over
the grid boundary probably due to the diminished resistance of the
ambient gas, whereas the density histograms showed more dense
gas at comparable times, as expected. In three dimensions, such
pancake clouds would also face the ram pressure, which might also
lead to compressed cloud heads with cometary tails and a stability
time-scale of the order of the orbital time-scale (Mathews 1986).

The runs with azimuthal magnetic field only underline the stabil-
ity problem and demonstrate clearly that our simulations are able to
capture the destruction process adequately. Our runs with a helical
magnetic field result in a much more stable cloud configuration,
which survives the destruction process for the simulation time. The
cloud corresponds to a helical filament in the azimuthal direction.
The core of this filament is dominated by the azimuthal field, pro-
ducing an overpressure of about 30 per cent. This is balanced by the
magnetic tension force of the poloidal field surrounding the core.
The stability of the configuration results from the nature of the ten-
sion force which is inversely proportional to the curvature radius
of the field lines. A radial compression straightens the field lines
vertically (less radial tension force) and bends them more sharply
at the vertical ends (increased vertical restoring tension force). A
similar restoring force is obtained for compressions in every other
direction. This configuration is very similar to the magnetic field
used in tokamaks. One reason why it is employed in this context is
precisely its MHD stability.

In order to isolate the effects of the magnetic field, we have
used negligible thermal cloud pressure. In our simulations we have
realized this via a minimum temperature of 1000 K. The simulations
would not have been any different had we used 10* or even 10° K, as
the magnetic pressure would still be by far dominant in the clouds.
We had initially decided for a low minimum temperature to check if
the induced dynamics would lead to any significant increase in the
cloud temperature via shock heating. The balance between shock
heating and radiative cooling was found by Krause & Alexander
(2007) in their simulations of clouds in jet cocoons to produce a
peak in the temperature histograms around 10* K. We do not find
this effect here. Even for the late phases of R34, where the cloud is
already essentially dispersed, the by far major part of the filaments
remain close to the minimum temperature. Therefore, we do not find
a heating mechanism which could compete with photoionization.

Cloud stability in the limit of negligible magnetic fields has been
studied extensively in the past (compare Section 1). We have studied
here the case of a dominant magnetic field compared to the thermal
energy density, and separated the effects of magnetic pressure and
magnetic tension. The azimuthal field behaves like a pressure in
our axisymmetric simulations. Hence, we expect that we could in
principle easily accommodate for a thermal pressure comparable to
the magnetic one by replacing some or all of the magnetic pressure
due to the azimuthal field by a corresponding thermal pressure.
Details would of course depend on the effective equation of state,
as the thermal pressure is affected by heating and cooling processes.

Another question one has to ask is how likely it would be to find
such a helical configuration around real AGN. If the intercloud den-
sity is comparable to the one assumed in our simulations, all unstable
configurations would be shredded and dissolved within months. It
is then quite difficult to replace the clouds quickly enough. If they
are, for example, launched from the accretion disc by a wind with
velocities comparable to ones observed in the BLR, it would take
a similar amount of time to be lifted to a significant altitude above
the disc. Yet, the BLR cannot be a thin disc (e.g. Osterbrock 1978).
Our helical field simulation has started quite far away from the
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final equilibrium, yet it has reached a stable configuration. It seems
therefore possible that many different kinds of initial conditions
eventually find an equilibrium solution. It is beyond the scope of
this study to find how many stable filaments may be produced in
given conditions of the interstellar medium.

Regarding the absolute magnitude of the magnetic field, Rees
(1987) has already pointed out that magnetic field values of a few
gauss, as required here, are expected in BLRs due to relativistic
winds, accretion flows or accretion-driven winds. He also mentions
the possibility of magnetic fields within the clouds if they are created
by the thermal instability. We note that a similar value for the
magnetic field has recently been estimated from its possible effects
on the polarization of the He line (Silant’ev et al. 2012).

What level of internal turbulence do our simulations predict?
We have argued that the available energy for turbulent motions
is limited by the cloud compression and the Alfvén speed. Since
the initial cloud volumes are unknown, we cannot make a quan-
titative prediction from this argument. If the BLR cloud popu-
lation is dominated by unstable clouds, being constantly shred-
ded and replaced, we would predict turbulent velocities of about a
third of the magnetosonic speed. If the radiation pressure is indeed
matched by the magnetic pressure in the cloud, the magnetosonic
speed would be of the order of 1000 kms~' and the predicted
internal velocities consequently a few hundred. For stable clouds
of the helical type as shown above, we would expect even less
in the cloud cores. Hence, the turbulent velocities of about 1000
kms~! derived by Kollatschny & Zetzl (2011) cannot be reached in
this way.

The cometary clouds observed by Maiolino et al. (2010), with
dense cores and filamentary tails, are compatible with our simula-
tion results. Taking the orbital motion into account, the filamentary
tails would be dominantly elongated in the azimuthal direction,
as probably also in the observations. If these clouds are indeed de-
stroyed within a few months, as estimated by Maiolino et al. (2010),
this would fit exactly with the destruction time-scale of the radiative
destruction mechanism discussed here.

In the literature one may also find BLR models that involve no
clouds at all, for example the disc wind model of Murray et al.
(1995). Here, the BLR forms the base of a wind accelerated by
radiative and thermal pressures. The advantages and disadvantages
of models with and without clouds have been nicely summarized by
Netzer (2008). Cloud models provide a significantly better match
to the emission line structures, while cloudless models obviously
avoid the confinement problem altogether.

We have addressed the meridional stability problem only. While
this is certainly one of the major issues in the BLR cloud stability
problem, we have not shown that the cloud would also survive 3D
effects. From the MHD point of view, kink instabilities are likely
to occur, which would cause bends in the cloud filament along its
major axis. Further, the clouds are unlikely to be extended along the
entire azimuthal angle as necessarily implied in our axisymmetric
simulations. In reality, the clouds could still be elongated substan-
tially in the azimuthal direction, if the ends are anchored in a thinner
disc structure, similar to coronal loops on the surface of the Sun. In
simple magnetic field configurations with closed field lines within
the cloud, the field could of course be transformed via reconnec-
tion, which would likely lead to cloud splitting as each closed field
region could support a cloud on its own. An azimuthally extended
cloud with the azimuthal field closing at the ends and returning
through some part of the cloud would be expected to expand in the
polar direction and form something like a closed ring. For any non-
axisymmetric clouds, the ram pressure would also be significant.
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For our cloud setups, the azimuthal ram pressure would be compa-
rable to the magnetic pressure in the cloud. Whether one can find
magnetic field configurations that would also stabilize against this
effect is beyond the scope of the present investigation.

In order to reach pressure equilibrium with the clouds, the inter-
cloud medium should also be magnetized on a similar level. This
might be accessible to the Faraday rotation. The expected rotation
measure would be of the order of

L
RM = 8.12 x 103/ neeB - dl radm™2, (24)
0

where the path length d/ is measured in units of 1073 pc, B in gauss
and the electron density in units of 10° cm™. As mentioned above,
the density is uncertain and could also be a few orders of magni-
tude lower. For a turbulent medium, one would therefore predict
that signals below ~10"* Hz (A > 30 pum) would be depolarized
(Krause, Alexander & Bolton 2007). This prediction might there-
fore be tested in the future by infrared polarimetry, if one is sure to
observe emission from a jet base.

For our simulations, a change in the geometry of the magnetic
field in the intercloud region should not matter much, because the
thermal energy density dominates there the magnetic one. As long
as the forces are set up close to equilibrium, we would expect an
outcome in between runs R34 (initial pressure equilibrium) and R35
(no initial pressure equilibrium). In reality, the situation might of
course be more complex, and the intercloud medium might be mag-
netically dominated and at the same time have a non-zero poloidal
component. It would then be important if the magnetic field would
be topologically connected to the clouds. In that case, the cloud
gas could escape along the field lines. It might also happen that re-
gions of space with a favourable magnetic field configuration might
protect new clouds which are just forming from the thermal insta-
bility. Yet, these complexities are beyond the scope of the present
discussion.

Summarizing, we find some indication that bound BLR clouds
might indeed be stabilized by the magnetic field against col-
lapse due to opposing radiative and gravitational forces. In
this case, the magnetic field would have to have a poloidal
component.

7 CONCLUSIONS

Gravitationally bound clouds facing strong radiation pressure are
unstable in the purely hydrodynamic case because radiative and
gravitational forces compress the clouds radially, whereas the ther-
mal pressure acts isotropically. They may be more stable if they
are significantly magnetized. In particular, we find in axisymmetric
MHD simulations with a prescription for the radiation pressure that
the magnetic tension force produces more stable clouds, while in
a situation where the geometry of the magnetic field is such that
its effect is only analogous to an additional pressure, the clouds are
similarly unstable as in the hydrodynamic case. In order to be effec-
tive, in the BLRs of a discussed sample of AGN, the magnetic field
strength should be of the order of a few gauss, accurate to about an
order of magnitude and constrained by the condition that magnetic,
radiative and gravitational forces should be comparable.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this paper:

Movies. Evolution of the simulated magnetized clouds (see Figs
3-5).
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