55 research outputs found

    In Vitro Analysis of the Role of Replication Protein A (RPA) and RPA Phosphorylation in ATR-mediated Checkpoint Signaling

    Get PDF
    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair

    Dynamics and Selective Remodeling of the DNA-binding Domains of RPA

    Get PDF
    Replication protein A (RPA) coordinates important DNA metabolic events by stabilizing single-stranded DNA (ssDNA) intermediates, activating the DNA-damage response and handing off ssDNA to the appropriate downstream players. Six DNA-binding domains (DBDs) in RPA promote high-affinity binding to ssDNA yet also allow RPA displacement by lower affinity proteins. We generated fluorescent versions of Saccharomyces cerevisiae RPA and visualized the conformational dynamics of individual DBDs in the context of the full-length protein. We show that both DBD-A and DBD-D rapidly bind to and dissociate from ssDNA while RPA remains bound to ssDNA. The recombination mediator protein Rad52 selectively modulates the dynamics of DBD-D. These findings reveal how RPA-interacting proteins with lower ssDNA binding affinities can access the occluded ssDNA and remodel individual DBDs to replace RPA

    A naturally occurring human RPA subunit homolog does not support DNA replication or cell-cycle progression

    Get PDF
    Replication Protein A (RPA) is a single-stranded DNA-binding protein essential for DNA replication, repair, recombination and cell-cycle regulation. A human homolog of the RPA2 subunit, called RPA4, was previously identified and shown to be expressed in colon mucosal and placental cells; however, the function of RPA4 was not determined. To examine the function of RPA4 in human cells, we carried out knockdown and replacement studies to determine whether RPA4 can substitute for RPA2 in the cell. Unlike RPA2, exogenous RPA4 expression did not support chromosomal DNA replication and lead to cell-cycle arrest in G2/M. In addition, RPA4 localized to sites of DNA repair and reduced γ-H2AX caused by RPA2 depletion. These studies suggest that RPA4 cannot support cell proliferation but can support processes that maintain the genomic integrity of the cell

    Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres

    Get PDF
    The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target

    Essential functions of the 32 kDa subunit of yeast replication protein A

    Get PDF
    Replication protein A (RPA) is a heterotrimeric (70, 32 and 14 kDa subunits), single-stranded DNA-binding protein required for cellular DNA metabolism. All subunits of RPA are essential for life, but the specific functions of the 32 and 14 kDa subunits remains unknown. The 32 kDa subunit (RPA2) has multiple domains, but only the central DNA-binding domain (called DBD D) is essential for life in Saccharomyces cerevisiae. To define the essential function(s) of RPA2 in S. cerevisiae, a series of site-directed mutant forms of DBD D were generated. These mutant constructs were then characterized in vitro and in vivo. The mutations had minimal effects on the overall structure and activity of the RPA complex. However, several mutants were shown to disrupt crosslinking of RPA2 to DNA and to dramatically lower the DNA-binding affinity of a RPA2-containing subcomplex. When introduced into S. cerevisiae, all DBD D mutants were viable and supported normal growth rates and DNA replication. These findings indicate that RPA2–DNA interactions are not essential for viability and growth in S. cerevisiae. We conclude that DNA-binding activity of RPA2 is dispensable in yeast and that the essential function of DBD D is intra- and/or inter-protein interactions

    An Alternative Form of Replication Protein A Expressed in Normal Human Tissues Supports DNA Repair

    Get PDF
    Replication protein A (RPA) is a heterotrimeric protein complex required for a large number of DNA metabolic processes, including DNA replication and repair. An alternative form of RPA (aRPA) has been described in which the RPA2 subunit (the 32-kDa subunit of RPA and product of the RPA2 gene) of canonical RPA is replaced by a homologous subunit, RPA4. The normal function of aRPA is not known; however, previous studies have shown that it does not support DNA replication in vitro or S-phase progression in vivo. In this work, we show that the RPA4 gene is expressed in normal human tissues and that its expression is decreased in cancerous tissues. To determine whether aRPA plays a role in cellular physiology, we investigated its role in DNA repair. aRPA interacted with both Rad52 and Rad51 and stimulated Rad51 strand exchange. We also showed that, by using a reconstituted reaction, aRPA can support the dual incision/excision reaction of nucleotide excision repair. aRPA is less efficient in nucleotide excision repair than canonical RPA, showing reduced interactions with the repair factor XPA and no stimulation of XPF-ERCC1 endonuclease activity. In contrast, aRPA exhibits higher affinity for damaged DNA than canonical RPA, which may explain its ability to substitute for RPA in the excision step of nucleotide excision repair. Our findings provide the first direct evidence for the function of aRPA in human DNA metabolism and support a model for aRPA functioning in chromosome maintenance functions in nonproliferating cells

    Combining Structure and Sequence Information Allows Automated Prediction of Substrate Specificities within Enzyme Families

    Get PDF
    An important aspect of the functional annotation of enzymes is not only the type of reaction catalysed by an enzyme, but also the substrate specificity, which can vary widely within the same family. In many cases, prediction of family membership and even substrate specificity is possible from enzyme sequence alone, using a nearest neighbour classification rule. However, the combination of structural information and sequence information can improve the interpretability and accuracy of predictive models. The method presented here, Active Site Classification (ASC), automatically extracts the residues lining the active site from one representative three-dimensional structure and the corresponding residues from sequences of other members of the family. From a set of representatives with known substrate specificity, a Support Vector Machine (SVM) can then learn a model of substrate specificity. Applied to a sequence of unknown specificity, the SVM can then predict the most likely substrate. The models can also be analysed to reveal the underlying structural reasons determining substrate specificities and thus yield valuable insights into mechanisms of enzyme specificity. We illustrate the high prediction accuracy achieved on two benchmark data sets and the structural insights gained from ASC by a detailed analysis of the family of decarboxylating dehydrogenases. The ASC web service is available at http://asc.informatik.uni-tuebingen.de/

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Recombinant Human Replication Protein A Binds to Polynucleotides with Low Cooperativity

    No full text
    Replication protein A (RPA) is a multisubunit single-stranded DNA-binding protein that is involved in multiple aspects of cellular DNA metabolism. We have determined quantitative estimates of the binding parameters of human replication protein A (hRPA) from equilibrium binding isotherms. The intrinsic binding constant (K) and cooperativity parameter (ω) were determined from analysis of changes in the intrinsic fluorescence of hRPA that occurred upon binding single-stranded DNA homopolynucleotides. The cooperativity of hRPA binding to both poly(dT) and poly(dA) was found to be low (ω = 10-20) at all NaCl concentrations examined (0.3-2 M). In contrast, the apparent binding affinity (Kω) of RPA decreased significantly with increasing salt concentration, such that log [NaCl]/log Kω was -2.8 for poly(dT) and -4.8 for poly(dA). We conclude that the salt dependent decrease in binding affinity resulted from changes in the intrinsic binding constant (K). These data suggest that the interaction of hRPA with single-stranded DNA involves significant electrostatic interactions, similar to other single-stranded DNA binding proteins. The apparent binding affinity (KO) of RPA was higher for poly(dT) than for poly(dA); extrapolation of our data indicated that the apparent binding affinity at 0.2 M NaCl was 1.6 x 1O^(1O) M-^1 for poly(dT) and 1.1 x 10^9 M-^1 for poly(dA)
    corecore