42 research outputs found
Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules
Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction mechanism involved in virulence factors regulation. Finally, we will discuss the consequence of the impact of host signal molecules on commensally or opportunistic pathogens associated with different human tissue
Ethylene receptors and related proteins in climacteric and non-climacteric fruits
Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation
The methyl phosphate capping enzyme Bin3 is a stable component of the fission yeast telomerase holoenzyme
Abstract The telomerase holoenzyme is critical for maintaining eukaryotic genome integrity. In addition to a reverse transcriptase and an RNA template, telomerase contains additional proteins that protect the telomerase RNA and promote holoenzyme assembly. Here we report that the methyl phosphate capping enzyme (MePCE) Bin3 is a stable component of the S. pombe telomerase holoenzyme. Bin3 associates with the telomerase and the U6 snRNA through an interaction with the recently described LARP7 family member Pof8, and we demonstrate that these two factors are evolutionarily linked in fungi. Our data suggest that the association of Bin3 with telomerase is independent of its methyltransferase activity, but rather that Bin3 negatively regulates TER1 levels and telomere length. Taken together, this work yields new insight into the composition, assembly, and regulation of the telomerase holoenzyme in fission yeast as well as the breadth of its evolutionary conservation
The methyl phosphate capping enzyme Bmc1/Bin3 is a stable component of the fission yeast telomerase holoenzyme
International audienceThe telomerase holoenzyme is critical for maintaining eukaryotic genome integrity. In addition to a reverse transcriptase and an RNA template, telomerase contains additional proteins that protect the telomerase RNA and promote holoenzyme assembly. Here we report that the methyl phosphate capping enzyme (MePCE) Bmc1/Bin3 is a stable component of the S. pombe telomerase holoenzyme. Bmc1 associates with the telomerase holoenzyme and U6 snRNA through an interaction with the recently described LARP7 family member Pof8, and we demonstrate that these two factors are evolutionarily linked in fungi. Our data suggest that the association of Bmc1 with telomerase is independent of its methyltransferase activity, but rather that Bmc1 functions in telomerase holoenzyme assembly by promoting TER1 accumulation and Pof8 recruitment to TER1. Taken together, this work yields new insight into the composition, assembly, and regulation of the telomerase holoenzyme in fission yeast as well as the breadth of its evolutionary conservation
Phenotypic and genomic characterization of pneumococcus-like streptococci isolated from HIV-seropositive patients.
Contains fulltext :
89734.pdf (publisher's version ) (Open Access)Accurate differentiation between pneumococci and other viridans streptococci is essential given their differences in clinical significance. However, classical phenotypic tests are often inconclusive, and many examples of atypical reactions have been reported. In this study, we applied various phenotypic and genotypic methods to discriminate between a collection of 12 streptococci isolated from the upper respiratory tract of HIV-seropositive individuals in 1998 and 1999. Conventional phenotypic characterization initially classified these streptococci as Streptococcus pneumoniae, as they were all sensitive to optochin and were all bile soluble. However, they did not agglutinate with anti-pneumococcal capsular antibodies and were also far more resistant to antimicrobial agents than typeable pneumococci isolated in the same period. Genotypic characterization of these isolates and control isolates by both multilocus sequence analysis (MLSA) and comparative genomic hybridization (CGH) showed that only a single isolate was genetically considered to be a true S. pneumoniae isolate, and that the remaining 11 non-typable isolates were indeed distinct from true pneumococci. Of these, 10 most closely resembled a subgroup of Streptococcus mitis isolates genetically, while one strain was identified as a Streptococcus pseudopneumoniae isolate. CGH also showed that a considerable part of the proposed pneumococcal core genome, including many of the known pneumococcal virulence factors, was conserved in the non-typable isolates. Sequencing of part of the 16S rRNA gene and investigation for the presence of ply by PCR corroborated these results. In conclusion, our findings confirm the close relationship between streptococci of the Mitis group, and show that both MLSA and CGH enable pneumococci to be distinguished from other Mitis group streptococci.01 maart 201