32 research outputs found

    A systematic review on the impact of auditory functioning and language proficiency on psychosocial difficulties in children and adolescents with hearing loss

    Get PDF
    Objective: Approximately 20% to 40% of children with hearing loss encounter psychosocial difficulties. This prevalence may be outdated, given the advancements in hearing technology and rehabilitation efforts to enhance the psychosocial well-being of these children. A systematic review of up-to-date literature can help to identify factors that may contribute to the children’s psychosocial well-being. Design/Study sample: A systematic review was conducted. Original articles were identified through systematic searches in Embase, Medline, PsychINFO, and Web of Science Core Collection. The quality of the papers was assessed using the Newcastle-Ottawa Quality Assessment Scale and custom Reviewers’ Criteria. Results: A search was performed on 20 October 2022. A total of 1561 articles were identified, and 36 were included for review. Critical appraisal led to 24 good to fair quality articles, and 12 poor quality articles. Conclusion: Children with hearing loss have a twofold risk of experiencing psychosocial difficulties compared to normal hearing peers. Estimates for functioning in social interactions, like speech perception (in noise) or language proficiency, have proven to be more adequate predictors for psychosocial difficulties than the degree of hearing loss. Our findings can be useful for identifying children at risk for difficulties and offering them earlier and more elaborate psychological interventions.</p

    Communicating Emotion:Vocal Expression of Linguistic and Emotional Prosody in Children With Mild to Profound Hearing Loss Compared With That of Normal Hearing Peers

    Get PDF
    Objectives: Emotional prosody is known to play an important role in social communication. Research has shown that children with cochlear implants (CCIs) may face challenges in their ability to express prosody, as their expressions may have less distinct acoustic contrasts and therefore may be judged less accurately. The prosody of children with milder degrees of hearing loss, wearing hearing aids, has sparsely been investigated. More understanding of the prosodic expression by children with hearing loss, hearing aid users in particular, could create more awareness among healthcare professionals and parents on limitations in social communication, which awareness may lead to more targeted rehabilitation. This study aimed to compare the prosodic expression potential of children wearing hearing aids (CHA) with that of CCIs and children with normal hearing (CNH). Design: In this prospective experimental study, utterances of pediatric hearing aid users, cochlear implant users, and CNH containing emotional expressions (happy, sad, and angry) were recorded during a reading task. Of the utterances, three acoustic properties were calculated: fundamental frequency (F0), variance in fundamental frequency (SD of F0), and intensity. Acoustic properties of the utterances were compared within subjects and between groups. Results: A total of 75 children were included (CHA: 26, CCI: 23, and CNH: 26). Participants were between 7 and 13 years of age. The 15 CCI with congenital hearing loss had received the cochlear implant at median age of 8 months. The acoustic patterns of emotions uttered by CHA were similar to those of CCI and CNH. Only in CCI, we found no difference in F0 variation between happiness and anger, although an intensity difference was present. In addition, CCI and CHA produced poorer happy-sad contrasts than did CNH. Conclusions: The findings of this study suggest that on a fundamental, acoustic level, both CHA and CCI have a prosodic expression potential that is almost on par with normal hearing peers. However, there were some minor limitations observed in the prosodic expression of these children, it is important to determine whether these differences are perceptible to listeners and could affect social communication. This study sets the groundwork for more research that will help us fully understand the implications of these findings and how they may affect the communication abilities of these children. With a clearer understanding of these factors, we can develop effective ways to help improve their communication skills.</p

    The orbit space of groupoids whose C∗C^*-algebras are GCR

    Full text link
    Let GG be second countable locally compact Hausdorff groupoid with a continuous Haar system. We remove the assumption of amenability in a theorem by Clark about GCR groupoid C∗C^*-algebras. We show that if the groupoid C∗C^*-algebra of GG is GCR then the orbits of GG are locally closed.Comment: 1

    The Generation R Study: design and cohort update 2017

    Get PDF
    The Generation R Study is a population-based prospective cohort study from fetal life until adulthood. The study is designed to identify early environmental and genetic causes and causal pathways leading to normal and abnormal growth, development and health from fetal life, childhood and young adulthood. This multidisciplinary study focuses on several health outcomes including behaviour and cognition, body composition, eye development, growth, hearing, heart and vascular development, infectious disease and immunity, oral health and facial growth, respiratory health, allergy and skin disorders of children and their parents. Main exposures of interest include environmental, endocrine, genomic (genetic, epigenetic, microbiome), lifestyle related, nutritional and socio-demographic determinants. In total, 9778 mothers with a delivery date from April 2002 until January 2006 were enrolled in the study. Response at baseline was 61%, and general follow-up rates until the age of 10 years were around 80%. Data collection in children and their parents includes questionnaires, interviews, detailed physical and ultrasound examinations, behavioural observations, lung function, Magnetic Resonance Imaging and biological sampling. Genome and epigenome wide association screens are available. Eventually, results from the Generation R Study contribute to the deve

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Peer reviewe

    Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction

    Get PDF
    Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein–protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    Get PDF
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 x 10(-8)) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.Peer reviewe

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    Get PDF
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30-80%, depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword repetition, in samples of 13,633 to 33,959 participants aged 5-26 years. We identified genome-wide significant association with word reading (rs11208009, p=1.098 x 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP-heritability, accounting for 13-26% of trait variability. Genomic structural equation modelling revealed a shared genetic factor explaining most variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits identified association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain, and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the biological underpinnings of uniquely human traits
    corecore