115 research outputs found

    Foxl2 functions in sex determination and histogenesis throughout mouse ovary development

    Get PDF
    Background. Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, e.g., Rspo1. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit. Results. Following Foxl2 loss, early testis genes (including Inhbb, Dhh, and Sox9) and several novel ovarian genes were consistently dysregulated during embryonic development. In the absence of Foxl2, expression changes affecting a large fraction of pathways were opposite those observed in Wnt4-null ovaries, reinforcing the notion that these genes have complementary actions in ovary development. Loss of one copy of Foxl2 revealed strong gene dosage sensitivity, with molecular anomalies that were milder but resembled ovaries lacking both Foxl2 alleles. Furthermore, a Foxl2 transgene disrupted embryonic testis differentiation and increased the levels of key female markers. Conclusion. The results, including a comprehensive principal component analysis, 1) support the proposal of dose-dependent Foxl2 function and anti-testis action throughout ovary differentiation; and 2) identify candidate genes for roles in sex determination independent of FOXL2 (e.g., the transcription factors IRX3 and ZBTB7C) and in the generation of the ovarian reserve downstream of FOXL2 (e.g., the cadherin-domain protein CLSTN2 and the sphingomyelin synthase SGMS2). The gene inventory is a first step toward the identification of the full range of pathways with partly autonomous roles in ovary development, and thus provides a framework to analyze the genetic bases of female fertility

    Variants of the serotonin transporter gene and NEO-PI-R Neuroticism: No association in the BLSA and SardiNIA samples

    Full text link
    The polymorphism in the serotonin transporter gene promoter region (5-HTTLPR) is by far the most studied variant hypothesized to influence Neuroticism-related personality traits. The results of previous studies have been mixed and appear moderated by the personality questionnaire used. Studies that used the TCI to assess Harm Avoidance or the EPQ to assess Neuroticism have found no association with the 5-HTTLPR. However, studies that used the NEO-PI-R or related instruments (NEO-PI, NEO-FFI) to measure Neuroticism have found some evidence of association. This study examines the association of variants in the serotonin transporter gene in a sample from a genetically isolated population within Sardinia (Italy) that is several times larger than previous samples that used the NEO-PI-R (N = 3,913). The association was also tested in a sample (N = 548) from the Baltimore Longitudinal Study of Aging (BLSA), in which repeated NEO-PI-R assessments were obtained. In the SardiNIA sample, we found no significant association of the 5-HTTLPR genotypes with Neuroticism or its facets (Anxiety, Angry-Hostility, Depression, Self-Consciousness, Impulsiveness, and Vulnerability). In the BLSA sample, we found lower scores on Neuroticism traits for the heterozygous group, which is inconsistent with previous studies. We also examined eight SNPs in the SardiNIA (N = 3,972) and nine SNPs in the BLSA (N = 1,182) that map within or near the serotonin transporter gene (SLC6A4), and found no association. Along with other large studies that used different phenotypic measures and found no association, this study substantially increases the evidence against a link between 5-HTT variants and Neuroticism-related traits. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64573/1/30932_ftp.pd

    The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts

    Get PDF
    High serum uric acid levels elevate pro-inflammatory–state gout crystal arthropathy and place individuals at high risk for cardiovascular morbidity and mortality. Genome-wide scans in the genetically isolated Sardinian population identified variants associated with serum uric acid levels as a quantitative trait. They mapped within GLUT9, a Chromosome 4 glucose transporter gene predominantly expressed in liver and kidney. SNP rs6855911 showed the strongest association (p = 1.84 × 10−16), along with eight others (p = 7.75 × 10−16 to 6.05 × 10−11). Individuals homozygous for the rare allele of rs6855911 (minor allele frequency = 0.26) had 0.6 mg/dl less uric acid than those homozygous for the common allele; the results were replicated in an unrelated cohort from Tuscany. Our results suggest that polymorphisms in GLUT9 could affect glucose metabolism and uric acid synthesis and/or renal reabsorption, influencing serum uric acid levels over a wide range of values

    Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    Get PDF
    Abstract Background Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. Methods We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Results Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10−6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10−5, we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10−5), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. Conclusions This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population

    Genome-wide association study of susceptibility loci for breast cancer in Sardinian population.

    Get PDF
    BACKGROUND: Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. METHODS: We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. RESULTS: Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p <  0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. CONCLUSIONS: This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∌8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    • 

    corecore