15 research outputs found

    Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival.

    Get PDF
    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival

    Dynamic Spatial Coding within the Dorsal Frontoparietal Network during a Visual Search Task

    Get PDF
    To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    High-resolution sex-specific linkage maps of the mouse reveal polarized distribution of crossovers in male germline.

    Get PDF
    Since the publication of the first comprehensive linkage map for the laboratory mouse, the architecture of recombination as a basic biological process has become amenable to investigation in mammalian model organisms. Here we take advantage of high-density genotyping and the unique pedigree structure of the incipient Collaborative Cross to investigate the roles of sex and genetic background in mammalian recombination. Our results confirm the observation that map length is longer when measured through female meiosis than through male meiosis, but we find that this difference is modified by genotype at loci on both the X chromosome and the autosomes. In addition, we report a striking concentration of crossovers in the distal ends of autosomes in male meiosis that is absent in female meiosis. The presence of this pattern in both single- and double-recombinant chromosomes, combined with the absence of a corresponding asymmetry in the distribution of double-strand breaks, indicates a regulated sequence of events specific to male meiosis that is anchored by chromosome ends. This pattern is consistent with the timing of chromosome pairing and evolutionary constraints on male recombination. Finally, we identify large regions of reduced crossover frequency that together encompass 5% of the genome. Many of these cold regions are enriched for segmental duplications, suggesting an inverse local correlation between recombination rate and mutation rate for large copy number variants. Genetics 2014 May; 197(1):91-106

    The Essential Role of Patient Blood Management in a Pandemic: A Call for Action.

    No full text
    The World Health Organization (WHO) has declared Coronavirus Disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic. Global health care now faces unprecedented challenges with widespread and rapid human-to-human transmission of SARS-CoV-2 and high morbidity and mortality with COVID-19 worldwide. Across the world, the medical care is hampered by a critical shortage of not only hand sanitizers, personal protective equipment, ventilators and hospital beds, but also impediments to the blood supply. Blood donation centers in many areas around the globe have mostly closed. Donors, practicing social distancing, some either with illness or undergoing self-quarantine, are quickly diminishing. Drastic public health initiatives have focused on containment and “flattening the curve” while invaluable resources are being depleted. In some countries, the point is reached at which demand for such resources, including donor blood outstrips supply. Questions as to the safety of blood persist. Although it does not appear very likely that the virus can be transmitted through allogeneic blood transfusion, this still remains to be fully determined. As options dwindle, we must enact regional and national shortage plans worldwide, and more vitally disseminate the knowledge of and immediately implement Patient Blood Management (PBM). PBM is an evidence-based bundle of care to optimize medical and surgical patient outcomes by clinically managing and preserving a patient’s own blood. This multinational and diverse group of authors issue this “Call to Action” underscoring “The Essential Role of Patient Blood Management in the Management of Pandemics” and urging all stakeholders and providers to implement the practical and common-sense principles of PBM and its multi-professional and multimodality approaches

    Accounting for financial sustainability. Different local governments choices in different governance settings

    No full text
    The chapter discusses Financial Sustainability (FS) in relation with governance setting for service delivery adopted by Local Governments (LGs). The changing corporate governance setting in public entities and their relationships with other entities that are co-makers in service delivery requires a wider vision of FS, encompassing all entities involved. The chapter aims to analyze how specific accounting tools and techniques can assist in the control of a LG’s FS based on the governance setting adopted for service delivery. More precisely, a standard accounting tool or technique to detect fiscal distress would not be effective for all LGs. Through the analysis of five case studies, the chapter demonstrates that promoting FS requires the adoption of accounting tools and techniques consistent with the governance model adopte
    corecore