122 research outputs found

    Centrosome centering and decentering by microtubule network rearrangement.

    Get PDF
    The centrosome is positioned at the cell center by pushing and pulling forces transmitted by microtubules (MTs). Centrosome decentering is often considered to result from asymmetric, cortical pulling forces exerted in particular by molecular motors on MTs and controlled by external cues affecting the cell cortex locally. Here we used numerical simulations to investigate the possibility that it could equally result from the redistribution of pushing forces due to a reorientation of MTs. We first showed that MT gliding along cell edges and pivoting around the centrosome regulate MT rearrangement and thereby direct the spatial distribution of pushing forces, whereas the number, dynamics, and stiffness of MTs determine the magnitude of these forces. By modulating these parameters, we identified different regimes, involving both pushing and pulling forces, characterized by robust centrosome centering, robust off-centering, or "reactive" positioning. In the last-named conditions, weak asymmetric cues can induce a misbalance of pushing and pulling forces, resulting in an abrupt transition from a centered to an off-centered position. Taken together, these results point to the central role played by the configuration of the MTs on the distribution of pushing forces that position the centrosome. We suggest that asymmetric external cues should not be seen as direct driver of centrosome decentering and cell polarization but instead as inducers of an effective reorganization of the MT network, fostering centrosome motion to the cell periphery

    Cell shape and contractility regulate ciliogenesis in cell cycle–arrested cells

    Get PDF
    Adhesive micropatterns show the effect of spatial confinement and actin network architecture on basal body positioning and primary cilium formation

    Geometrical and mechanical properties control actin filament organization.

    Get PDF
    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model

    A novel community driven software for functional enrichment analysis of extracellular vesicles data.

    Get PDF
    Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Cell mechanics: Wave of migration

    No full text
    International audienc

    contrÎle de la polarité des cellules adhérentes

    No full text
    we used fibronectin micro-patterns imposing cells to spread upon adhesive and non-adhesive areas. The relative positioning of these areas was used to impose asymmetric adhesive environment to cells.Therefore we showed that cells develop large stress fibres upon non-adhesive areas and protrusions upon adhesive ones. This polarity of the actin cytoskeleton induced a specific recruitment of APC, a molecules interacting with both actin and microtubules. Thereby the polarity of the actin network was transmitted to the microtubules which keep growing along stress fibres whereas they stop when contacting adhesive edges. The internal polarity of cells as revealed by the relative positioning of nucleus and centrosome was thus harmonised with the geometry of the extracellular matrix. Furthermore, we showed that this geometry impinge on spindle orientation and cell division axis independently of cell shape.Les travaux effectuĂ©s au cours de cette thĂšse et prĂ©sentĂ©s dans ce manuscrit consistent en l'utilisation de micro-patrons adhĂ©sifs pour l'Ă©tude de l'organisation spatiale des organites intracellulaires. Nous avions comme modĂšle de travail la compartimentation et la polarisation des cellules au sein des tissus. Dans cette situation, les cellules n'adhĂšrent pas de façon homogĂšne et isotrope Ă  leur environnement. Au contraire, elles s'attachent Ă  leur voisines et Ă  la matrice extracellulaire, en des endroits particuliers, grĂące Ă  des complexes transmembranaires, les adhĂ©sions. Ces adhĂ©sions sont une des bases structurales de la construction du cytosquelette. Leur distribution spatiale peut ĂȘtre anisotrope, et parfois asymĂ©trique, ce qui guide la polaritĂ© intrinsĂšque des cellules. Nous avons utilisĂ© la technique d'impression par micro-contact pour manipuler la forme des cellules et la distribution de leurs adhĂ©sions. Les cellules adoptent l'enveloppe convexe du patron adhĂ©sif quelle que soit sa gĂ©omĂ©trie. Si, par exemple, les cellules sont contraintes de s'attacher Ă  un T ou un V, sans pouvoir Ă©tablir de contact en dehors de ce patron, elles adopteront dans les deux cas la mĂȘme forme triangulaire. Nous avons utilisĂ© cette propriĂ©tĂ© pour imposer aux cellules des formes identiques sur des patrons adhĂ©sifs diffĂ©rents afin d'analyser le rĂŽle spĂ©cifique de la distribution des adhĂ©sions sur l'organisation du cytosquelette et des compartiments intracellulaires. Nos mesures montrent que les cellules dĂ©veloppent des tensions Ă©levĂ©es dans les filaments d'actine, assemblĂ©s en fibres de stress, au-dessus des zones non adhĂ©sives. Sur les zones adhĂ©sives, la tension est plus faible, et la polymĂ©risation de l'actine en un rĂ©seau branchĂ© induit la formation de protrusions membranaires. La localisation des protrusions est donc complĂ©mentaire de celle des zones contractiles.Cette polarisation du systĂšme actine dirige le recrutement de certaines protĂ©ines dont l'activitĂ© influence la dynamique des microtubules. La croissance des microtubules en contact avec le cortex cellulaire est modulĂ©e diffĂ©remment selon que l'actine forme des fibres de stress ou un rĂ©seau branchĂ©. Cependant, quel que soit le comportement des extrĂ©mitĂ©s du rĂ©seau de microtubules Ă  la pĂ©riphĂ©rie, le centre du rĂ©seau, le centrosome, se maintient toujours au centre de la cellule. Le noyau est exclu de ce centre et se positionne vers les zones de contraction. Ainsi, Ă  l'intĂ©rieur de la cellule, l'orientation de l'axe noyau-centrosome rĂ©pond Ă  l'asymĂ©trie Ă©tablie en pĂ©riphĂ©rie.La polaritĂ© du cortex est conservĂ©e pendant la division cellulaire ou mitose. Le corps cellulaire, qui s'est arrondi Ă  l'entrĂ©e en mitose, est maintenu en contact avec le substrat adhĂ©sif par des fibres de rĂ©traction riches en actine. Les mesures expĂ©rimentales de l'orientation des divisions, sur diffĂ©rents patrons adhĂ©sifs, rĂ©vĂšlent que la distribution spatiale des ancrages de ces fibres sur la cellule guide l'orientation du fuseau mitotique, et par consĂ©quent, le plan de division des cellules. En effet, les pĂŽles du fuseau se positionnent en face des zones corticales oĂč sont arrimĂ©es les fibres de rĂ©traction, indĂ©pendamment de la forme qu'avait la cellule avant l'entrĂ©e en mitose. Il existe des moteurs molĂ©culaires ancrĂ©s dans le cortex des cellules et capables de tirer sur les microtubules astraux Ă©manant des pĂŽles du fuseau. En faisant l'hypothĂšse que ces moteurs ne sont activĂ©s que dans les zones oĂč se situent les fibres de rĂ©traction, on peut Ă©tablir un modĂšle physique permettant de rendre compte de toutes les observations expĂ©rimentales effectuĂ©es
    • 

    corecore