76 research outputs found
Phylogeography of the tropical planktonic foraminifera lineage Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents
Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates
Disruptive selection and bet-hedging in planktonic Foraminifera: Shell morphology as predictor of extinctions
Extinction is a remarkably difficult phenomenon to study under natural conditions. This is because the outcome of stress exposure and associated fitness reduction is not known until the extinction occurs and it remains unclear whether there is any phenotypic reaction of the exposed population that can be used to predict its fate. Here we take advantage of the fossil record, where the ecological outcome of stress exposure is known. Specifically, we analyze shell morphology of planktonic Foraminifera in sediment samples from the Mediterranean, during an interval preceding local extinctions. In two species representing different plankton habitats, we observe shifts in trait state and decrease in variance in association with non-terminal stress, indicating stabilizing selection. At terminal stress levels, immediately before extinction, we observe increased growth asymmetry and trait variance, indicating disruptive selection and bet-hedging. The pre-extinction populations of both species show a combination of trait states and trait variance distinct from all populations exposed to non-terminal levels of stress. This finding indicates that the phenotypic history of a population may allow the detection of threshold levels of stress, likely to lead to extinction. It is thus an alternative to population dynamics in studying and monitoring natural population ecology
Benthic Foraminifera assemblage in two size fractions from the Pefka E section (Island of Rhodes, Greece)
Benthic Foraminifera assemblages are employed for past environmental reconstructions as well as for biomonitoring studies in recent environments. Despite their established status for such applications, and existing protocols for sample treatment, not all studies using benthic Foraminifera employ the same methodology. For instance, there is no broad practical consensus whether to use the >125 µm or >150 µm size fraction for benthic foraminiferal assemblage analyses. Here, we use Pleistocene material from the Pefka E section on the Island of Rhodes (Greece) that has been counted in both size fractions, to investigate whether a 25 µm difference in the counted assemblage fraction is already sufficient to have an impact on ecological studies. We analyse the influence of the difference in size fraction on studies of the biodiversity as well as multivariate assemblage analyses of the sample material. We find that for both types of studies, the general trends remain the same regardless of the chosen size fraction, but in detail significant differences emerge which are not consistently distributed between samples. Studies which require a high degree of precision can thus not compare results from analyses that used different size fractions, and the inconsistent distribution of differences makes it impossible to develop corrections for this problem. We therefore advocate the consistent use of the >125 µm size fraction for benthic Foraminifera studies in the future
The Effect of Size Fraction in Analyses of Benthic Foraminiferal Assemblages: A Case Study Comparing Assemblages From the >125 and >150 μm Size Fractions
Benthic foraminiferal assemblages are employed for past environmental reconstructions, as well as for biomonitoring studies in recent environments. Despite their established status for such applications, and existing protocols for sample treatment, not all studies using benthic Foraminifera employ the same methodology. For instance, there is no broad practical consensus whether to use the >125 or >150 μm size fraction for benthic foraminiferal assemblage analyses. Here, we use early Pleistocene material from the Pefka E section on the Island of Rhodes (Greece), which has been counted in both size fractions, to investigate whether a 25 μm difference in the counted fraction is already sufficient to have an impact on ecological studies. We analyzed the influence of the difference in size fraction on studies of biodiversity as well as multivariate assemblage analyses of the sample material. We found that for both types of studies, the general trends remain the same regardless of the chosen size fraction, but in detail significant differences emerge which are not consistently distributed between samples. Studies which require a high degree of precision can thus not compare results from analyses that used different size fractions, and the inconsistent distribution of differences makes it impossible to develop corrections for this issue. We therefore advocate the consistent use of the >125 μm size fraction for benthic foraminiferal studies in the future
Reproduction dynamics of planktonic microbial eukaryotes in the open ocean
Understanding the biology of reproduction of an organismal lineage is important for retracing key evolutionary processes, yet gaining detailed insights often poses major challenges. Planktonic Foraminifera are globally distributed marine microbial eukaryotes and important contributors to the global carbon cycle. They cannot routinely be cultured under laboratory conditions across generations, and thus details of their life cycle remain incomplete. The production of flagellated gametes has long been taken as an indication of exclusively sexual reproduction, but recent research suggests the existence of an additional asexual generation in the life cycle. To gain a better understanding of the reproductive biology of planktonic Foraminifera, we applied a dynamic, individual-based modelling approach with parameters based on laboratory and field observations to test if sexual reproduction is sufficient for maintaining viable populations. We show that temporal synchronization and potentially spatial concentration of gamete release seems inevitable for maintenance of the population under sexual reproduction. We hypothesize that sexual reproduction is likely beneficial during the adaptation to new environments, while population sustenance in stable environments can be ensured through asexual reproduction
Data from: Grasping the shape of belemnoid arm hooks - a quantitative approach
Chitinous arm hooks (onychites) of belemnoid coleoid cephalopods are widely distributed in Mesozoic sediments. Due to their relative abundance and variable morphology compared with the single, bullet-shaped, belemnite rostrum, arm hooks came into the focus of micropaleontologists as a promising index fossil group for the Jurassic–Cretaceous rock record and have been the target of functional, ecological, and phylogenetic interpretations in the past. Based on three well-preserved arm crowns of the Toarcian diplobelid Chondroteuthis wunnenbergi, we analyzed the shape of a total of 87 micro-hooks. The arm crown of Chondroteuthis is unique in having uniserial rather than biserial hooks. The first application of elliptic Fourier shape analysis to the arm weapons of belemnoid coleoids allows for the distinction of four micro-hook morphotypes and the quantification of shape variation within these morphotypes. Based on the best-preserved arm crown, we reconstructed the distribution of morphotypes within the arm crown and along a single arm. Our quantitative data support former observations that smaller hooks were found close to the mouth and at the most distal arm parts, while the largest hooks were found in the central part of the arm crown. Furthermore, we found a distinct arm differentiation, as not every arm was equipped with the same hook morphotype. Here, we report the functional specialization of the belemnoid arm crown for the first time and speculate about the potential function of the four morphotypes based on comparisons with modern cephalopods. Our analyses suggest a highly adapted functional morphology and intra-individual distribution of belemnoid hooks serving distinct purposes mainly during prey capture
Reproduction dynamics of planktonic microbial eukaryotes in the open ocean
Understanding the biology of reproduction of an organismal lineage is important for retracing key evolutionary processes, yet gaining detailed insights often poses major challenges. Planktonic Foraminifera are globally distributed marine microbial eukaryotes and important contributors to the global carbon cycle. They cannot routinely be cultured under laboratory conditions across generations, and thus details of their life cycle remain incomplete. The production of flagellated gametes has long been taken as an indication of exclusively sexual reproduction, but recent research suggests the existence of an additional asexual generation in the life cycle. To gain a better understanding of the reproductive biology of planktonic Foraminifera, we applied a dynamic, individual-based modelling approach with parameters based on laboratory and field observations to test if sexual reproduction is sufficient for maintaining viable populations. We show that temporal synchronization and potentially spatial concentration of gamete release seems inevitable for maintenance of the population under sexual reproduction. We hypothesize that sexual reproduction is likely beneficial during the adaptation to new environments, while population sustenance in stable environments can be ensured through asexual reproduction.publishedVersio
Calcareous dinoflagellate cysts, Pirumella multistrata and wall layers from the Upper Hauterivian (Cretaceous) of a claystone-marlstone succession in the clay-pit Frielingen (Hanover-area), NW Germany
A pale-dark bedded claystone-marlstone succession of Late Hauterivian age (Simbirskites discofalcatus ammonite Zone; Early Cretaceous), exposed in the clay-pit Frielingen, Germany (Lower Saxony Basin), was investigated with respect to its calcareous dinoflagellate cyst content. This study aimed at a better understanding of the usefulness of calcareous dinoflagellate cysts to reconstruct palaeoenvironments, and an evaluation of the postulated palaeoenvironmental trends associated with Lower Cretaceous pale-dark bedding rhythms. The ratio of abundant taxa, character traits of cysts, and the results of statistical species analyses were used for those analyses. Current models of sea level fluctuations and sea surface temperature were modified on the basis of the composition of calcareous dinoflagellate assemblages. Superimposed on a general sea level rise, a regressive interval with high sea surface water temperatures is reflected by the thick bed 118. This distinctively warm interval is represented by a dark bed that has commonly been interpreted to indicate cooler surface waters. It is therefore necessary to review the palaeoenvironmental interpretation of pale-dark bedding rhythms of claystone successions of the Boreal Realm. Factors other than sea surface temperature seem to be important as well.
The species Pirumella edgarii was found to favour time intervals with higher sediment input. The newly described species Pirumella? sp. nov. may perhaps indicate similar environments in warmer water masses. The species Pirumella tanyphloia has been emended, we suggest including it in Pirumella multistrata forma tanyphloia. Moreover, the pithonelloid cysts found in Frielingen are currently the oldest of their kind
Data from: Grasping the shape of belemnoid arm hooks - a quantitative approach
Chitinous arm hooks (onychites) of belemnoid coleoid cephalopods are widely distributed in Mesozoic sediments. Due to their relative abundance and variable morphology compared with the single, bullet-shaped, belemnite rostrum, arm hooks came into the focus of micropaleontologists as a promising index fossil group for the Jurassic–Cretaceous rock record and have been the target of functional, ecological, and phylogenetic interpretations in the past. Based on three well-preserved arm crowns of the Toarcian diplobelid Chondroteuthis wunnenbergi, we analyzed the shape of a total of 87 micro-hooks. The arm crown of Chondroteuthis is unique in having uniserial rather than biserial hooks. The first application of elliptic Fourier shape analysis to the arm weapons of belemnoid coleoids allows for the distinction of four micro-hook morphotypes and the quantification of shape variation within these morphotypes. Based on the best-preserved arm crown, we reconstructed the distribution of morphotypes within the arm crown and along a single arm. Our quantitative data support former observations that smaller hooks were found close to the mouth and at the most distal arm parts, while the largest hooks were found in the central part of the arm crown. Furthermore, we found a distinct arm differentiation, as not every arm was equipped with the same hook morphotype. Here, we report the functional specialization of the belemnoid arm crown for the first time and speculate about the potential function of the four morphotypes based on comparisons with modern cephalopods. Our analyses suggest a highly adapted functional morphology and intra-individual distribution of belemnoid hooks serving distinct purposes mainly during prey capture
- …