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Abstract

Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many
morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level
of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the
planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic
diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic
lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total
diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show
that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an
ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse
lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic
structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific
challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal
is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution
patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification
rates.
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Introduction

In many groups of marine microplankton, morphologically

defined species tend to underestimate diversity [1,2]. Cryptic

speciation is prevalent in these groups, manifested in genetic

differences that are not accompanied by the development of

morphologically divergent traits [3]. In consequence, diversity

patterns and species biogeography derived from observations of

morphospecies may not reflect processes at the level of biological

species.

This observation has consequences for the interpretation of

biogeographic patterns of marine microplankton. At the morpho-

logical level, species often appear globally distributed, but their

constituent cryptic lineages may show more differentiated patterns

[4]. In theory, such spatially structured distribution may reflect

either dispersal limitation, differential adaptation or niche

incumbency [5,6]. The fundamental difference among these

scenarios lies in the ubiquity of gene flow and in the importance

of species interactions. Under dispersal limitation, genetic drift

associated with the establishment of abiotic barriers may lead to

the differentiation of allopatric sister lineages. If dispersal is not the

primary restriction and species interaction is of subdued impor-

tance, then distribution of species should reflect the spatial

realization of suitable niches. If, however, species interactions

are important then the occupancy of the realized niches will be

influenced by competitive exclusion, leading to a pattern of niche

incumbency. Because of the manifest differences among the

predictions of these three scenarios, an observed species biogeog-

raphy could in theory be used to draw conclusions about the

importance of dispersal and species interactions for the distribution

and diversity of marine plankton.

Because of the prevalence of cryptic speciation and the often

cosmopolitan distribution of morphospecies in plankton, an

assessment of these three end-member scenarios for biogeographic

patterns requires an extensive global sampling of genetic diversity,

covering the entire range of the studied lineage. Here we use the

genetically most diverse morphospecies of planktonic foraminifera

as a model to assess global biogeography of DNA-delineated

cryptic species in view of these scenarios. Most morphospecies of
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planktonic foraminifera have a cosmopolitan distribution within

their preferred temperature range [7] and evidence exists that

gene flow in these obligate sexual outbreeders occurs on a global

scale [8,9]. On the other hand, there is abundant evidence that

morphospecies of planktonic foraminifera represent complexes of

reproductively isolated but morphologically indistinguishable

cryptic species [4]. In most cases such cryptic species reveal

restricted distribution patterns, indicating that biogeographies of

morphospecies in this group are not representative for processes at

the level of biological species [10–12].

Earlier studies of the phylogeography of planktonic foraminifera

attempted to identify the pattern of speciation that has led to the

observed distribution or the environmental factors influencing it,

but the importance of biological interactions has been largely

overlooked [4,13,14]. Aurahs et al. [10] first noted that the

distribution of genetic lineages of Globigerinoides ruber could be best

explained by competitive exclusion and the concept was then used

by Seears et al. [15] to explain the occurrence of genetic types of

planktonic foraminifera in the Arabian Sea.

In this study we present the results of a global survey on

the foraminifera lineage Globigerinella [16], which is abundant in the

surface waters in tropical and subtropical provinces throughout the

world ocean (Fig. 1). The dominant morphospecies in this lineage,

G. siphonifera tolerates a temperature range from 11uC to 30uC and a

salinity range from 27–45% [17] and it is limited vertically to the

euphotic zone due to its association with symbionts. In the modern

ocean, Globigerinella calida [18] has been described as its sister species,

but it is morphologically similar and its status as a separate species

remains unclear. This study includes specimens that have been

assigned to that species name as well. Within the typical G. siphonifera

morphology, two divergent types were distinguished by different

cellular morphology and symbionts [19,20], and potentially also by

morphological, physiological, chemical and genetic differences

[21,22]. The high degree of variability in the G. siphonifera lineage

is reflected in its genetic diversity. Analyses of the small ribosomal

subunit RNA gene (SSU rDNA), which is part of the only gene

complex known so far in planktonic foraminifera, identified a large

number of genetic lineages, which show no evidence for introgres-

sion and are typically considered as cryptic species [4,21–24]. Based

on these data, the G. siphonifera group appears to be the most

genetically diverse lineage of modern planktonic foraminifera [4].

Although the existing sampling has been far from exhaustive, it

seemed to indicate that individual cryptic genetic lineages within

G. siphonifera are cosmopolitan [4], but their proportions vary with

surface ocean properties [23]. Such distribution could be

explained by a combination of unlimited dispersal and differential

adaptation, but it remains uncertain whether it stands the test of

global sampling. Here we analyze SSU rDNA sequence data from

a global survey that covers the distribution range of G. siphonifera

both latitudinally, across the tropical and subtropical oceans and

their satellite semi-isolated marginal seas (Fig. 1) in order to study

its biogeography and draw conclusions on the emergence of the

observed high genetic diversity.

Materials and Methods

Ethics statement
The field collections carried out for the purpose of this paper did

not involve endangered or protected species. Locations of all

sampling stations are given in Table S1. The sampling was

carried out in open ocean and followed the regulations for the

exclusive economic zones (EEZ) of the coastal countries, provided

for each expedition by the respective authority. No specific

permission was required to collect the analyzed plankton.

Sampling
Specimens of Globigerinella siphonifera were collected during 26

expeditions between 1996 and 2012 covering all seasons and water

depths from the surface to 700 m (Table S1). The sampling

represents a combination of plankton hauls during ship cruises,

including stratified sampling, with nearshore collections by small

nets and scuba diving. Mesh size varied from 100 to 200 mm. In all

cases, individual foraminifera were separated from the rest of the

plankton and taxonomically identified using stereomicroscopes.

Living specimens still containing cytoplasm were cleaned using a

brush and either transferred to 1.5 ml tubes for direct DNA

extraction or air-dried on cardboard slides and stored at 220 or

280uC until further processing. In addition, the dataset was

enhanced by inclusion of 45 sequences of G. siphonifera available in

GenBank (Table S1). In order to resolve the phylogeny of the G.

siphonifera sequences, to root the tree, and to estimate divergence

times among the main lineages, we have attempted to obtain SSU

rDNA sequences of the sister species Beella digitata. Eight specimens

of that species have been collected from plankton nets in the

Western Mediterranean (Table S1).

DNA extraction, amplification and sequencing
DNA extraction followed either the DOC protocol of

Holzmann & Pawlowski [25], during which the shell is dissolved,

the guanidine method [26] or an urea method where the DNA is

extracted in a mixture of 100 mM Tris (pH 8), 100 mM NaCl,

1% Sarcosyl, 8 M Urea and 2 mM TCEP, kept at room

temperature. The latter two methods allow preservation of the

shell. Polymerase chain reaction (PCR) was used to amplify a

,350 to 1000 bp fragment of the 39 end of the SSU rDNA either

using the proofreading VentH polymerase (New England Biolabs)

or Taq DNA Polymerase (Qiagen). The amplified fragments

include all sequence sites necessary to differentiate between the

genetic lineages of G. siphonifera. Details on extraction, amplifica-

tion and primers for all individuals are given in Table S1. PCR

products were purified using the QIAquick gel extraction kit

(Qiagen), WizardH PCR clean up (Promega) or DNA Gel

Extraction Kit (Millipore). Products were sequenced directly by

external service providers (Agowa, Berlin and University of

Edinburgh Gene Pool). In order to constrain intra-individual

variability, eight individuals from different regions were cloned

using the Zero BluntH TOPOH PCR Cloning Kit (Invitrogen) with

TOP10 chemically competent cells. Sequence chromatograms

were checked manually for ambiguous reads and corrected where

possible. All new sequences longer than 200 bp were submitted to

GenBank (http://www.ncbi.nlm.nih.gov/; accession nos.:

KF769560-KF769948).

Delineation of genetic lineages
The primary sequence alignment was carried out in MAFFT v.

6.935b [27] using the option -auto, which allows the program to

decide on the optimal alignment algorithm (Alignment S2 in
File S1). Aurahs et al. [28] have shown that MAFFT handled best

the particular sequence structure of foraminiferal SSU rDNA out

of six alignment programs tested. The alignment was used to

define the main genetic lineages and to group identical sequences

(here referred to as ‘ribotypes’ (RT)), which present the same

combination of certain sequence motifs within the amplified

fragment of the SSU rDNA. This analysis identified the presence

of three main lineages, which further split into up to seven clades.

The initial automated alignment was split into three subalignments

corresponding to the three main genetic lineages (Alignments
S4–6 in File S1). For each subalignment sequence chromato-

grams were checked by eye for sequencing errors, sequence ends

Phylogeography of Planktonic Foraminifera
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were trimmed and length-polymorphic regions were left-aligned

by default in MESQUITE v. 2.75 [29]. The SSU rDNA of

foraminifera is characterized by the occurrence of highly length-

polymorphic regions (LPR) in the core structure, which hinder the

computation of straightforward alignments with consistent homol-

ogy of individual base pairs [28]. The number of inferred

parsimonious changes in these regions would be highly depending

on the alignment, the hypothetical homology of individual sites.

Therefore, we opted for treating each LPR as a single, complex

character (an oligonucleotide motif) in the ribotype analysis

instead.

Due to the different length of the individual accessions, and the

particular nature of foraminifer expansions segments, the direct

application of median-joining networks [30] to establish relation-

ships between ribotypes of each major genetic lineage was not

feasible. Instead ribotypes were analyzed based on the variable

positions in each subalignment. Differing sequence patterns (point

mutations and LPR motifs) were coded as a binary matrix, in

which characters with more than two states were represented by a

corresponding number of half-weighted binary characters. A point

mutational pattern involving the nucleotides A, C, and G would be

coded as 1 0 0, 0 1 0, and 0 0 1 using three characters with a

weight of 5 instead of the standard weight of 10. LPR motifs were

coded accordingly at this step. Mutation patterns that were only

present in a single sequence were not considered separately, but

merged with the nearest ribotype for abundance analysis. The

resultant binary matrices comprising up to 19 ribotypes were then

analyzed using NETWORK v. 4.5 (Fluxus Technologies Inc.) to

compute median-joining (MJ) networks [30].

The recognition of ribotypes allowed us to structure the genetic

diversity within G. siphonifera between the level of the three main

lineages and the ribotypes into discrete and objectively defined

genetic types, using a threshold of three mutational events.

Ribotypes separated by three or fewer mutational events were

considered to belong to the same genetic type. Earlier studies

reported the existence of different ribotypes within the genome of

one single individual in some but not all species of foraminifera

[31]. Consistent with earlier investigations of intraindividual

variability within the spinose planktonic clade [8], in our study,

only one ribotype per individual was found, which was apparent

by the lack of ambiguous sequence reads and was verified by

cloning, which revealed identical sequences within single individ-

uals. The apparent lack of hybridization among the ribotypes

would suggest that they may represent genetically isolated units.

However, we cannot entirely exclude the existence of hybrids with

the present data because of insufficient cloning depth. Therefore,

to avoid an over-interpretation of the genetic diversity and arrive

at a number of distinguishable lineages, we reserve the (cryptic)

species rank for genetic types.

ML tree inference and bootstrapping
To resolve the phylogenetic relationships of the G. siphonifera

lineages and B. digitata to the rest of the planktonic foraminifera,

the MAFFT sequence alignment from Aurahs et al. [28], including

sequences of 23 planktonic foraminifera morphospecies, was used

as a basis to which the new sequences were aligned by the

sequence adding function in MAFFT v. 7 [32] (Alignment S1 in
File S1). Settings were left to default. This enlarged alignment was

then used for tree inference under the maximum likelihood (ML)

criterion with RAxML-HPC2 v. 7.6.3 [33] via the CIPRES

Gateway [34]. The alignment was used without further manip-

ulation or filtering. Branch support for the ML tree of the general

foraminifera MAFFT alignment was established with the fast

implementation (option –x) [35] of nonparametric bootstrapping

(BS) [36]. The number of necessary replicates was determined by

automatic bootstopping with the majority-rule tree based criterion

(option -#autoMRE). The per-site rate approximation model [33]

was used for the fast BS phase followed by a slow final model

optimization under the general time reversible model allowing for

between-site variation modeled via a gamma distribution (GTR +
G; option -m GTRCAT). Run parameters were set to infer in one

run the best-known ML tree and perform a full BS analysis (option

–f a).

To resolve further the relationships among the genetic types of

G. siphonifera, a set of analyses has been carried out including only

sequences of G. siphonifera and B. digitata. Following Aurahs et al.

Figure 1. World map indicating the distribution of the target species and sampling sites for this study. Gray shading indicates the
relative abundance of Globigerinella siphonifera as it is found in planktonic foraminiferal assemblages from surface sediments interpolated from data
in the MARGO database [64] by Ocean Data View [65] in default projection. Black lines show the borders of occurrence with a threshold of 1%. White
circles indicate the sampling stations of all samples included in this study. Diagonal lines indicate areas where no data are available.
doi:10.1371/journal.pone.0092148.g001
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[28], the stability of the topology has been evaluated by a multiple

alignment approach. To this end, automated alignments have

been used, based on the default settings of the online-available, up-

to-date versions of MAFFT v. 7, MUSCLE v. 3.7 [37] and

KALIGN v. 2 [38]. Tree inference was conducted under the same

settings as described above and without prior manual modification

of the alignments.

Molecular clock and speciation rates
In order to estimate the divergence time among the genetic

lineages within G. siphonifera, a molecular clock approach was

applied, using the G. siphonifera/B. digitata MAFFT alignment. B.

digitata was used as an outgroup to define the Globigerinella root.

Molecular clock analysis was performed using Bayesian methods

implemented in BEAST v. 1.7.5. [39] via the CIPRES Gateway.

The alignment was tested under various clock models (strict,

uncorrelated lognormal and uncorrelated exponential). The split

between G. siphonifera and B. digitata is marked in the fossil record

by the first appearance of the species Beella praedigitata [40,41]. This

event is dated to 10.2 Ma in Aze et al. [41]; the age of the oldest

reported occurrence of this species in deep-sea sediments is listed

in the CHRONOS database as 11.96 Ma (http://chronos.org)

[42]. Here we used the mean of the two ages (11.08 Ma) and

associate this date with an uncertainty of 0.88 Ma. Detailed

settings were the same for all three clock models tested. The

distribution of the fixed node age prior was considered normal.

The GTR+G+I (adding a parameter for the proportion of

invariant sites) was used as a substitution model, to allow for

different evolutionary rates between variable and conserved

regions of the SSU rDNA. Speciation rate was considered

constant under the Yule-Process and a UPGMA tree was

calculated as a starting tree. Markov-Chain-Monte Carlo

(MCMC) analyses were conducted for 10,000,000 generations,

with a burn-in of 1000 generations and saving each 1000th

generation. The maximum clade credibility tree with median node

heights was calculated in TREEAnnotator from the BEAST

package, with a burn-in of 100 trees and a posterior probability

limit of 0.0. The resulting tree was then analyzed in FigTree v.

1.3.1 [43].

To test for trait dependency of changes in birth-only speciation

rates among different clades, we applied a covariates generalized

linear model (GLM) approach [44] on the trees produced by the

lognormal and exponential uncorrelated clocks. This method

allows to test, whether or not the presence of a certain trait had a

significant effect on the speciation rate within given clades in a

phylogenetic tree, taking branch-lengths into account. If reliable

phylogenetic trees exist, it is considerably more powerful than

traditional tests for changes in speciation rate, that only compare

the number of lineages within adelphotaxa [45]. The test was

performed in R v. 3.0.1 [46], using the package ‘ape’ v. 3.0.8 [47].

Assessment of sampling intensity
For the global dataset and for the separate regions, first-order-

Jackknifing [48,49] was performed in R v. 3.0.1 to estimate the

number of genetic types expected to occur in each region, given

their occurrence in the sampling sites. Such test provides a first

assessment whether or not the sampling was sufficient to detect all

genetic lineages present in each region. For that, each station was

treated as a separate sample, independent of the other stations,

and it was assumed that the samples are sufficiently random and

well distributed to allow such an approach, and cover the world

ocean area to an extent that allows them to be assumed

homogenous. The jackknifing is insofar most useful for this

dataset, as it is fully independent of any possible interaction of

different genetic types within the same quadrat, and offers a very

good bias-correction for low densities per sample [49].

Results

In addition to the 45 sequences from GenBank, in this study we

obtained 370 partial sequences of the 39 end of the SSU rDNA

representing 338 individuals of Globigerinella siphonifera from 108

stations of 25 expeditions in seven regions of the world ocean

(Table S1). The 39 end of the SSU rDNA, routinely used in

foraminifera molecular studies, includes the helices 32 to 49 [50]

and additional foraminifera specific expansion segments of

variable length. Most sequence divergence was found in the

expansion segments 37/e1, 41/e1, 45/e1 and 46/e1, the variable

region V7 consisting of several helices and the terminal part of

helix 49 (Tp49) [51]. Furthermore, point mutations were also

found in the sequentially and structurally conserved regions

(helices 32–49) of foraminifera SSU rDNA (Table S2). All

sequences obtained either by direct sequencing or cloning showed

a clear signal and could be attributed without doubt to one of the

main genetic lineages. We did not observe any intraindividual

variability neither by seeing ambiguous reads at consistent

positions or by observing variability among sequences from cloned

specimens, which would be the case if individuals contained

different ribotypes in the multiple copies of the SSU rDNA.

Additionally, we obtained 25 sequences of eight individuals of

Beella digitata covering the entire fragment of the SSU rDNA used

for phylogenetic inference in planktonic foraminifera by Aurahs

et al. [28].

All sequences could be assigned to one of the three main

lineages, which, applying a distance threshold of 0.1028,

correspond to objectively definable taxonomic units [24]. These

lineages are robust to increased taxonomic coverage, especially to

the inclusion of B. digitata (Fig. 2a) and remain supported to

.89% in maximum-likelihood inference. The sister relationship of

B. digitata has been confirmed (Fig. 2a), supporting observations

from the fossil record [40].

Following the strict definition excluding singletons, the variabil-

ity of the analyzed gene fragment of G. siphonifera reveals the

existence of 30 SSU rDNA sequence variants (ribotypes; Table
S2). This confirms the exceptional level of diversity noted in earlier

studies [4]. Within lineage I, the six separated ribotypes can be

organized into two basic genetic lineages, namely Ia (RT 1+2) and

Ib (RT 3–6), that differ by up to eight characters (all of them point

mutations; Fig. 3a). Mutations occur to equal parts in the variable

regions (41/e1, 46/e1 and Tp49) and in the more conserved

regions (helices 33, 36, 37, 43). The five ribotypes within lineage

III are only little more divergent than those in lineage I, with two

(RT 4+5) being separated by up to 13 point mutations from the

remaining three (RT 1–3), which differ by 3–4 characters from

each other (Fig. 3b). Consequently, these ribotypes can be

classified into three different genetic lineages, IIIa, IIIb and IIIc.

Mutations separating these lineages are exclusively point muta-

tions and are mostly found in the variable regions (37/e1, 41/e1

and V7) and only in two conserved regions (helices 37 and 38).

Highest divergence is found in lineage II, where sequence

variation sums up to 19 ribotypes that can be grouped into seven

genetic lineages (IIa1–6 and IIb; Fig. 4). RT 18 and 19 are with

more than 40 mutational events most distinct and assigned to

lineage IIb. Mutations in lineage II are homogeneously distributed

between all variable and all conserved regions.

Subsequently, the phylogenetic relationships among the 30

ribotypes organized in 12 genetic lineages within G. siphonifera were

tested using three different alignments (Fig. 2b). This analysis

Phylogeography of Planktonic Foraminifera
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Figure 2. Phylogenetic relationships within planktonic foraminifera. A) Phylogenetic relationships of planktonic foraminifera including
Globigerinella siphonifera and Beella digitata. The tree is based on the MAFFT alignment of Aurahs et al. [28] to which SSU rDNA sequences of G.
siphonifera and B. digitata were added. Tree inference and calculation of bootstrap values was conducted in RAxML in the CIPRES gateway. Sequence
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reveals that 10 out of the 12 genetic lineages, defined as differing

by more than three characters, are supported in the majority of the

alignments. A resolution down to the separate ribotypes as seen in

the networks, however, is not possible in the tree, and therefore the

terminal branches are collapsed. The topology of the phylogram,

including the inferred allocation of mutation events to branches,

indicates a nested, hierarchical pattern of divergence, suggesting

an ongoing process of sequential differentiation.

It is remarkable that despite the seven-fold increase in

sequencing effort compared to existing data, no new major

lineages within G. siphonifera were discovered. A similar picture

appears when individual genetic lineages are considered. Here,

our data complement earlier studies [4,23,24] by discovering two

new genetic lineages (lineages IIIb and c; Fig. 2b), which is again

highly disproportionate to sequencing effort. At the lowest level of

divergence considered, the proportion of newly discovered

sequence motifs is the highest: 16 out of 30 ribotypes are reported

here for the first time. Even here, the amount of ribotype discovery

is disproportionate to sequencing effort and the higher number of

new motifs simply reflects the hierarchical scaling within the clade.

The geographical distribution of specimens assigned to the

twelve genetic lineages reveals the existence of cosmopolitanism as

well as provincialism within cryptic genetic types of G. siphonifera

(Fig. 5a). Type IIIc shows the most restricted occurrence; it was

only found in the Gulf of Aquaba, where it has the highest

abundance of all occurring types. Type IIIa was only found in low

abundances and exclusively in the Eastern Atlantic. Type Ia seems

to have a cosmopolitan occurrence since it was found in the

majority of regions sampled. Types Ib, IIb and IIIb can also be

considered cosmopolitan, although they are less evenly distributed.

Type Ib has its highest abundances in the Western Indian Ocean

and the Red Sea and very low abundances in the Atlantic, where

only one individual was found. Type IIb was sampled in high

numbers in the Atlantic, but only few individuals in the Eastern

Pacific. Type IIIb was found in the marginal seas of the Atlantic

and in the Western Indian Ocean.

The group of genetic types IIa is highly abundant globally and

shows a truly cosmopolitan distribution. However, its constituent

types show highly differentiated distribution patterns, character-

ized by a surprising difference in diversity between the Atlantic

and the Pacific (Fig. 5b). The Indian Ocean contains the highest

diversity with five different types of this lineage. Type IIa1 was

found in very low abundances mainly in the Indian Ocean and

one individual in the Coral Sea. Type IIa4 seems to be restricted

to the Red Sea and the Western Indian Ocean. Type IIa5 is most

abundant in the Arabian Sea, but also present in low numbers in

the Northwestern Pacific. Type IIa6 was mainly found close to

Japan, but apparently also occurs in the Indian Ocean as indicated

by one individual sampled in the Arabian Sea. In contrast to the

high diversity of lineage IIa in the Pacific and Indian Ocean, the

diversity in the Atlantic is considerably more limited. There we

only encountered two different types: Type IIa2, which except for

two individuals off California seems to be restricted to the Atlantic

Ocean and Type IIa3, which has a cosmopolitan distribution and

occurs in every region sampled.

Discussion

A surprisingly high SSU rDNA sequence divergence is found in

most morphospecies of planktonic foraminifera [4]. This sequence

divergence is typically organized into a small number of lineages,

which show no evidence for hybridization, their divergences

appear ancient and their distribution follows a geographical

structure [10,12]. For these reasons, such lineages, also referred to

as ‘‘Types’’ or ‘‘Genetic types’’, are considered to represent

reproductively isolated taxonomic units akin to biological species.

Although this interpretation appears most likely, it is fair to state

that unambiguous evidence for the status of these lineages as

biological species is lacking. This is because planktonic foraminif-

era do not reproduce in culture, so that cross-mating experiments

such as those carried out for cryptic species of diatoms by Amato et

al. [2] are at present impossible. Because of large differences in

substitution rates, it is difficult to devise a universal threshold

distance for DNA-based species delineation in the group [24].

However, evidence from existing surveys suggests that most

divergences in the analyzed SSU rDNA fragment are not

associated with hybridization. The lack of hybridization could be

shown particularly well in cases where divergent multiple copies

are found in sequences of SSU rDNA, or where additionally also

the associated ITS region had been sequenced [12,52]. On the

other hand, an exhaustive survey of Globigerinoides sacculifer, a

closely related species to G. siphonifera, revealed the existence of one

diversity within morphospecies has been collapsed, except for G. siphonifera where only terminal branches were collapsed. B) Phylogenetic tree of G.
siphonifera with B. digitata as an outgroup. The tree is based on a MAFFT alignment and was calculated in RAxML on the CIPRES gateway. Bootstrap
values are shown based on MAFFT/MUSCLE/KALIGN alignments. Light microscopic images of G. siphonifera and B. digitata illustrate the gross
morphology. Both individuals measure ,250 mm across.
doi:10.1371/journal.pone.0092148.g002

Figure 3. Ribotype networks for delineation of genetic types.
A) Median-joining network of Globigerinella siphonifera lineage I
showing genetic distances and relationships between ribotypes (RT)
and their grouping into two basic genetic lineages, Ia (RT 1+2, bright
green) and Ib (RT 3–6, light green). Numbers on links indicate amount
of mutational events between two ribotypes if they are larger than one.
n indicates number of individuals representing one ribotype. B)
Ribotype network of lineage III distinguishing three basic lineages, IIIa
(RT 1), IIIb (RT 2+3) and IIIc (RT 4+5), addressed by different shades of
red.
doi:10.1371/journal.pone.0092148.g003
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rare divergent SSU sequence motif, which differed by three

characters, but was associated with the same ITS sequence as

specimens without the SSU motif [8]. Because of this observation

and the divergence structure observed in our data (Figs. 3, 4), we

assume that the lowest level of genetic variability in G. siphonifera,

manifested by the 30 SSU ribotypes, may not be associated with

reproductive isolation, but represents divergence and rDNA

variation within species. Because of the uncertainty in the

interpretation of the evolutionary status of the 30 ribotypes, when

analyzing the distribution of the 12 genetic lineages, which we

consider cryptic species, we cannot be entirely sure that we are not

underestimating the number of reproductively isolated lineages.

However, since the difference in the distribution and allocation of

cryptic diversity is manifested already at the level of the 12 genetic

lineages, the conclusions drawn from the lineage-level data must

also apply to any unit below these.

Notwithstanding the exact status of the 12 genetic lineages, the

first step before analyzing their distribution and allocation is to ask

how representative the sampling has been. To this end, the first-

order-Jackknifing approach (Table 1), which serves as an

objective estimate of lineage richness that is to be expected both

globally and regionally, shows that the number of lineages in our

collection appears to approach the expected total number of

lineages, given the assumptions of the test. Similarly, the number

of sampled lineages in almost every region falls within the 95%

confidence interval of the Jackknifing estimate, implying that

further lineages are unlikely to have been discovered in each

region by more intensive sampling. Only for the Red Sea does the

test indicate the existence of at least one lineage that has not been

sampled yet. This analysis confirms the empirical observation that

a seven-fold increase in sampling intensity led to a disproportion-

ately low rate of discovery of new variants and that the distribution

of the proportion of new variants is scaled with their hierarchical

position. Despite the higher lineage diversity than among other

planktonic foraminifera species (12 in G. siphonifera, compared to 7

in Neogloboquadrina pachyderma and Globigerina bulloides [4]), the global

survey in the ‘‘hyperdiverse’’ G. siphonifera confirms, that the total

number of cryptic genetic types within morphospecies of

planktonic foraminifera is limited and that the biological diversity

Figure 4. Ribotype network for delineation of genetic types. Ribotype network for Globigerinella siphonifera lineage II showing genetic
distances and relationships between the 19 ribotypes (RT) and their assignment to different genetic lineages: IIa1 (RT 1), IIa2 (RT 2+3), IIa3 (RT 4–9),
IIa4 (RT 10), IIa5 (RT 11–14), IIa6 (RT 15–17) and IIb (RT 18+19), addressed by different colors. Numbers at links indicate the number of mutational
events between two ribotypes. n indicates number of individuals representing one ribotype.
doi:10.1371/journal.pone.0092148.g004
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in the group may be underestimated by a factor of about 10, but

not significantly more.

Observed (So) and estimated (Se, first-order-Jackknifing) number

of genetic types of Globigerinella siphonifera for the global and

regional data sets. Only in the Red Sea the observed number of

types does not fall within the 95% confidence interval (CI95) of the

estimate, suggesting the existence of at least one more genetic type

in that region.

Having established that the sampling intensity, both globally

and regionally, can reasonably be considered sufficient to capture

the occurrence pattern of the G. siphonifera lineages, we first

consider the relationships of these lineages within the phylogenetic

tree. Here, a major finding is the uneven distribution of

diversification between the three main lineages; with seven types

in lineage II and only two and three types in lineage I and III

respectively. Since the Jackknifing analysis suggests that our

sampling approaches the real diversity in each region, the uneven

distribution of types between the lineages is unlikely to be due to

systematic undersampling.

The second obvious explanation for uneven allocation of

diversity to lineages is their age, with older lineages having more

time to accumulate species [53]. To test this hypothesis, we

calculated molecular clocks for the diversification of genetic

lineages within G. siphonifera based on the dating of the split from its

sister species B. digitata (Fig. 6) [40,41]. The ages resulting from

both relaxed clock models showed a more realistic distribution

than the results of a strict clock model and agree remarkably well

with earlier calculations based on entirely independent calibrations

Figure 5. Biogeographic distribution of the genetic types of Globigerinella siphonifera. A) Geographic distribution of the G. siphonifera
lineages plotted at their exact sampling locations on a map in Mercator projection. Numbers indicate the amount of individuals of one genetic type
found at one station. One year mean sea surface temperature is indicated by gray shading. Arrows indicate main ocean currents. B) Geographic
distribution of the genetic types of G. siphonifera lineage IIa.
doi:10.1371/journal.pone.0092148.g005
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[23]. The age for the split of the hyperdiverse lineage IIa from

lineage IIb is calculated to have taken place ,5 Ma in the early

Pliocene. The split between lineage II and III dates to ,7 Ma and

the split of lineage I from the rest of the lineages took place

,9 Ma. Thus, as the branching order of the phylogeny alone

indicates (Fig. 2), the highest number of genetic types is found in

the youngest lineage. Based on the molecular clock estimates

(Fig. 6), this lineage had a two to three times shorter duration than

the other lineages. In consequence, lineage longevity is not feasible

as an explanation for unbalanced distribution of diversity.

Thus, since the high diversity in lineage II is unlikely to be a

result of undersampling and is not correlated with lineage age, we

may consider the possibility of it resulting from uneven rates of

diversification among the lineages [54]. We test this hypothesis by

using a covariates GLM approach that analyzes trait dependency

of changes in birth-only speciation rates. The results reveal that

speciation rates in lineage IIa must have been significantly higher

than in all other lineages within G. siphonifera. This result is

consistent for the uncorrelated lognormal (x2 = 4.258, df = 1,

p = .039) as well as the exponential (x2 = 8.232, df = 1, p = .004)

molecular clock analysis. Thus, we conclude that increased

speciation rate seems most likely to be the cause for the

disproportionate accumulation of diversity that occurred in lineage

IIa.

The exact factor causing an increase in speciation rate in the

hyperdiverse lineage IIa is difficult to reconstruct from the

phylogeny alone. However the topology of the median joining

network of lineage II (Fig. 4) reveals a centripetal distribution of

ribotypes, with missing ancestral motifs. Such distribution implies

that lineage II diversified by sequential fragmentation of a

population of ancestral ribotypes, which was entirely transformed

during the fragmentation process. This is interesting because it

speaks against speciation by peripheral isolation.

The second clue to the unique status of the hyperdiverse lineage

IIa comes from its biogeography. The striking pattern of (Indo-

)Pacific isolation within this lineage (Types IIa1, 4–6; Fig. 5) has

not only consequences for the interpretation of its elevated

diversity, but it offers critical evidence to evaluate the biogeogra-

phy of the cryptic genetic diversity of the constituent morpholog-

ical species. To this end, we consider the three end-member

scenarios explaining restricted distribution in turn (dispersal

limitation, differential adaptation or niche incumbency).

First, we argue that the biogeographic distribution of the genetic

lineages of G. siphonifera (Fig. 5) shows that a dispersal limitation

does not seem to be the likely factor causing divergence in this

taxon. In every one of the three lineages we find at least one type

with a cosmopolitan distribution. Even the hyperdiverse lineage

IIa contains one type (IIa3) with a global occurrence. If dispersal

limitation would be the prevailing factor for speciation, we should

expect an accumulation of endemic types in the Atlantic. The

connection between the tropical-subtropical Atlantic and Indopa-

cific habitats of G. siphonifera (Fig. 1) is mediated by the Agulhas

current, which transports warm saline water from the Indopacific

to the Atlantic [55] and was shown to carry live populations of

planktonic foraminifera with it [56]. Therefore, in theory, lineages

originating in the Atlantic should be much less likely to be able to

escape from there, whereas lineages originating in the Indopacific

should be constantly passively transported to the Atlantic due to

the absence of a dispersal barrier. Indeed, for some species of

marine copepods genetic differentiation and isolation of Atlantic

populations due to limited dispersal between ocean basins were

shown [57], whereas other species revealed a cosmopolitan

distribution with a lack of barriers to gene flow and also showed

a connection between the Indian Ocean and the Southern Atlantic

[58]. These studies revealed no evidence for a population isolated

in the Pacific Ocean and the observed biogeography thus could be

considered consistent with passive dispersal.

The similarity of relative abundances of genetic lineages in

Globigerinella between the different ocean basins analyzed by non-

metric multidimensional scaling (Figure S1) reveals a close

relationship between the Atlantic Ocean with its marginal seas, the

Mediterranean and the Caribbean Sea. Also the Arabian Sea and

its neighboring region, the Western Indian Ocean, show a high

similarity in genetic type occurrence as well as the Red Sea which

is affected by inflowing water from the Arabian Sea. The analysis

shows the Pacific community to be related similarly to the Atlantic

as well as to the Indian Ocean, however there is no close similarity

between the Indian Ocean and the Atlantic. This observation is

completely contrary to what would be expected if the occurrence

of genetic lineages reflected passive dispersal by currents between

the Atlantic and the Indian Ocean. Our conclusion that dispersal

limitation is unlikely the cause of the observed pattern is in line

with widespread evidence for global mixing in tropical populations

of other species of planktonic foraminifera [8,11] as well as

evidence based on observations in the fossil record [59].

Second, we consider ubiquitous dispersal and differential

adaptation. The accumulation of genetic types in the Indopacific

could be indicative for differential adaptation of these genetic types

to ecological or hydrographical conditions which are only realized

in this region. We consider this explanation unlikely, because all of

the endemic genetic types co-occurred upon collection in the same

samples with genetic types that are cosmopolitan and there was no

systematic offset in living depth among any of the genetic types, as

evidenced by their occurrence in stratified plankton hauls. Further,

types IIa2 and IIa3, which show a wider distribution or even are

cosmopolitan, are nested within the clade comprising the endemic

types. If there was a specific adaptation associated within the

hyperdiverse lineage that limits its occurrence to the Indopacific

then two independent evolutionary events are required to have

occurred: the character had to evolve at the base of the IIa clade

and then be reversed at the base of the IIa2 + IIa3 clade.

Therefore the most likely scenario to explain the distribution of

the genetic types in the hyperdiverse lineage is the concept of niche

incumbency [5,60]. In this scenario, we assume that the

diversification of lineage IIa has taken place in the (Indo-)Pacific

by sequential fragmentation of the parent population. Until the

Table 1. Comparison between observed and estimated
number of genetic types.

Region So Se CI95 SoM Se 6 CI95

Global 12 12.99 1.95 true

Atlantic Ocean 6 6.97 1.90 true

Mediterranean Sea 3 3 0 true

Caribbean Sea 5 5.93 1.83 true

Red Sea 5 7.67 2.61 false

Arabian Sea 6 8.73 2.76 true

Western Indian Ocean 7 7 0 true

Pacific Ocean 8 8.96 1.89 true

Observed (So) and estimated (Se, first-order-Jackknifing) number of genetic
types of Globigerinella siphonifera for the global and regional data sets. Only in
the Red Sea the observed number of types does not fall within the 95%
confidence interval (CI95) of the estimate, suggesting the existence of at least
one more genetic type in that region.
doi:10.1371/journal.pone.0092148.t001
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divergence of the IIa2 + IIa3 clade, all lineages either remained

restricted to the Indopacific or their invasion efforts into the

Atlantic ended in extinction. The reason for the failure of most of

the genetic types in this lineage to spread into the Atlantic would

be incumbency – the niche that these genetic types possess is

strongly overlapping with that of an Atlantic incumbent (which-

ever it may be), preventing the Pacific invaders, carried with the

Agulhas current, to establish a viable population in the Atlantic.

On a smaller scale, an exclusion pattern may in fact be expressed

in the Atlantic between the invasive types IIa2 and IIa3 which

represent two closely related sister lineages. The majority of

individuals of Type IIa3 were found in the Eastern Atlantic and

the Mediterranean Sea, whereas type IIa2 is the dominant type in

the western part of the North Atlantic and the Caribbean.

Requiring only one evolutionary event (the ability of the IIa2 +
IIa3 lineage to invade the Atlantic), the niche incumbency or

competitive exclusion thus seems to be a more parsimonious

explanation of the distribution pattern of the genetic lineages of G.

siphonifera.

The unexpectedly high genetic diversity as well as the

differentiated distribution of the genetic types in the studied

planktonic foraminifera show that occurrence patterns based on

morphological species are too coarse to elucidate biogeographic

patterns. In agreement with previous studies [11,12], we show that

the differentiated pattern of lineage distribution is unlikely to

reflect dispersal limitation, but that it also does not simply reflect

passive dispersal by ocean currents. Instead, these results confirm

that even in marine microplankton high diversification is possible

[61] and that interactions and competition between lineages

together with historical contingency shape their present-day

occurrence and distribution in the world ocean.

Supporting Information

Figure S1 Rendition of similarity of relative abundances of all

genetic types of G. siphonifera in the sampling regions. In order to

statistically assess the geographical structure in the occurrence of

genetic lineages of G. siphonifera, the sampling sites were separated

into seven regions of the world ocean. The similarity of relative

abundances of genetic lineages among these regions was visualized

using non-metric multidimensional scaling based on the Morisita

similarity index [62], as implemented in the PAST software v. 2.

17c [63]. Arrows indicate the direction of surface ocean currents

connecting neighboring regions.

(TIF)

Table S1 Information on individual samples and handling

procedures. Detailed information on each G. siphonifera individual

Figure 6. Molecular clock estimates for the evolution of the Globigerinella siphonifera lineages. Molecular phylogeny of G. siphonifera and
Beella digitata based on a MAFFT alignment with time estimate ranges from the uncorrelated lognormal (blue) and exponential (red) molecular
clocks. Numbers at nodes indicate the divergence ages shown with their 95% confidence intervals. Number in brackets indicates fixed age for the
split of G. siphonifera and B. digitata. Green triangles and numbers show ages calculated in de Vargas et al. [23], except for one terminal node which
seems too young. Black arrow indicates the starting point from where the presence of a certain trait had a significant effect on the speciation rate,
based on a covariates generalized linear model approach.
doi:10.1371/journal.pone.0092148.g006
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used in the study (Sheet 1), GenBank samples added to the dataset

(Sheet 2) and primer table with all different primers used (Sheet 3).

(XLSX)

Table S2 Sequence differences between G. siphonifera ribotypes.

Table showing the sequence differences and their location in the

secondary structure of the SSU rDNA used for differentiation of

ribotypes within the three main lineages.

(XLSX)

File S1 Sequence alignments used for phylogenetic reconstruc-

tions and delineation of genetic types. MAFFT alignment of

sequences of 23 planktonic foraminifera morphospecies including

representative sequences of every ribotype of G. siphonifera and B.

digitata from this study (Alignment S1); MAFFT alignment of all G.

siphonifera sequences used in this study including GenBank

sequences (Alignment S2); MAFFT alignment of representative

sequences of every ribotype of G. siphonifera and B. digitata

(Alignment S3) and G. siphonifera subalignments for each of the

three major lineages (Alignment S4-S6).

(ZIP)
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scale same-specimen morpho-genetic analysis of Truncorotalia truncatulinoides: A

perspective on the morphological species concept in planktonic foraminifera.
Palaeogeogr Palaeocl: http://dx.doi.org/10.1016/j.palaeo.2011.1003.1013, (in

press, Corrected Proof).
53. McPeek MA, Brown JM (2007) Clade age and not diversification rate explains

species richness among animal taxa. Am Nat 169: E97–E106.
54. Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ (2007) Exceptional among-

lineage variation in diversification rates during the radiation of Australia’s most

diverse vertebrate clade. Proc R Soc B 274: 2915–2923.

55. Beal LM, De Ruijter WPM, Biastoch A, Zahn R (2011) On the role of the

Agulhas system in ocean circulation and climate. Nature 472: 429–436.

56. Peeters FJC, Acheson R, Brummer GJA, de Ruijter WPM, Schneider RR, et al.

(2004) Vigorous exchange between the Indian and Atlantic oceans at the end of

the past five glacial periods. Nature 430: 661–665.

57. Goetze E (2011) Population Differentiation in the Open Sea: Insights from the

Pelagic Copepod Pleuromamma xiphias. Integrative and Comparative Biology 51:

580–597.
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