283 research outputs found
Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data
Many functional analysis tools have been developed to extract functional and mechanistic insight from bulk transcriptome data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events and low library sizes. It is thus not clear if functional TF and pathway analysis tools established for bulk sequencing can be applied to scRNA-seq in a meaningful way.To address this question, we perform benchmark studies on simulated and real scRNA-seq data. We include the bulk-RNA tools PROGENy, GO enrichment, and DoRothEA that estimate pathway and transcription factor (TF) activities, respectively, and compare them against the tools SCENIC/AUCell and metaVIPER, designed for scRNA-seq. For the in silico study, we simulate single cells from TF/pathway perturbation bulk RNA-seq experiments. We complement the simulated data with real scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks on simulated and real data reveal comparable performance to the original bulk data. Additionally, we show that the TF and pathway activities preserve cell type-specific variability by analyzing a mixture sample sequenced with 13 scRNA-seq protocols. We also provide the benchmark data for further use by the community.Our analyses suggest that bulk-based functional analysis tools that use manually curated footprint gene sets can be applied to scRNA-seq data, partially outperforming dedicated single-cell tools. Furthermore, we find that the performance of functional analysis tools is more sensitive to the gene sets than to the statistic used
Dynamics of growth and weight transitions in a pediatric cohort from India
<p>Abstract</p> <p>Background</p> <p>There is paucity of information regarding time trends of weight status in children from rapidly developing economies like India. The aim of the study was to analyse the dynamics of growth and weight transitions in a cohort of school children from India.</p> <p>Methods</p> <p>A population of 25 228 children was selected using stratified random sampling method from schools in a contiguous area in Ernakulam District, Kerala, India. Weight and height were measured at two time points, one in 2003-04 and another in 2005-06. The paired data of 12 129 children aged 5-16 years were analysed for the study.</p> <p>Results</p> <p>The mean interval between the two surveys was 2.02 ± 0.32 years. The percentage of underweight, normal weight, overweight and obese children in the year 2003-04 were 38.4%, 56.6%, 3.7%, and 1.3% respectively. The corresponding figures in year 2005-06 were 29.9%, 63.6%, 4.8% and 1.7% respectively. Among the underweight children, 34.8% migrated to normal weight status and 0.1% migrated to overweight status. Conversion of underweight to normal weight predominated in urban area and girls. Among the normal weight children, 8.6% migrated to underweight, 4.1% migrated to overweight and 0.4% migrated to obesity. Conversion of normal weight to overweight status predominated in urban area, private schools and boys. Conversion of normal weight to underweight predominated in rural area, government schools and boys. Among the overweight children, 26.7% migrated to normal weight status, 16.4% became obese and 56.9% retained their overweight status. Of the obese children, 6.2% improved to normal weight status, 25.3% improved to overweight status and 68.5% remained as obese in 2005-06. There was significant difference in trends between socio demographic subgroups regarding conversion of underweight status to normal weight as well as normal weight status to overweight.</p> <p>Conclusion</p> <p>The study population is experiencing rapid growth and nutritional transitions characterised by a decline in the underweight population coupled with an escalation of the overweight population. The heterogeneous nature of this transition appears to be due to differences in socio demographic factors.</p
The structural variation landscape in 492 Atlantic salmon genomes
Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species.Peer reviewe
Emodin Suppresses Migration and Invasion through the Modulation of CXCR4 Expression in an Orthotopic Model of Human Hepatocellular Carcinoma
10.1371/journal.pone.0057015PLoS ONE83
Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy
Background
A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets.
Methods
Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis.
Results
A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001).
Conclusion
We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
Modeling Collective Cell Behavior in Cancer: Perspectives From an Interdisciplinary Conversation
Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions
Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems
Acute gastrointestinal (GI) dysfunction and failure have been increasingly recognized in critically ill patients. The variety of definitions proposed in the past has led to confusion and difficulty in comparing one study to another. An international working group convened to standardize the definitions for acute GI failure and GI symptoms and to review the therapeutic options
Identification of constrained sequence elements across 239 primate genomes
Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3–9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals
- …