49 research outputs found

    Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes

    Get PDF
    Background: The Cronobacter genus (Enterobacter sakazakii) has come to prominence due to its association with infant infections, and the ingestion of contaminated reconstituted infant formula. C. sakazakii and C. malonaticus are closely related, and are defined according their biotype. Due to the ubiquitous nature of the organism, and the high severity of infection for the immunocompromised, a multilocus sequence typing (MLST) scheme has been developed for the fast and reliable identification and discrimination of C. sakazakii and C. malonaticus strains. It was applied to 60 strains of C. sakazakii and 16 strains of C. malonaticus, including the index strains used to define the biotypes. The strains were from clinical and non-clinical sources between 1951 and 2008 in USA, Canada, Europe, New Zealand and the Far East. Results: This scheme uses 7 loci; atpD, fusA, glnS, gltB, gyrB, infB, and pps. There were 12 sequence types (ST) identified in C. sakazakii, and 3 in C. malonaticus. A third (22/60) of C. sakazakii strains were in ST4, which had almost equal numbers of clinical and infant formula isolates from 1951 to 2008. ST8 may represent a particularly virulent grouping of C. sakazakii as 7/8 strains were clinical in origin which had been isolated between 1977 - 2006, from four countries. C. malonaticus divided into three STs. The previous Cronobacter biotyping scheme did not clearly correspond with STs nor with species. Conclusion: In conclusion, MLST is a more robust means of identifying and discriminating between C. sakazakii and C. malonaticus than biotyping. The MLST database for these organisms is available online at http://pubmlst.org/cronobacter

    The effect of dose, settling time, shelf life, storage temperature and extractant on Moringa oleifera Lam. protein coagulation efficiency

    Full text link
    © 2024 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.enmm.2024.100919The study explores green chemistry to purify drinking water using Moringa oleifera (MO) Lam. seeds. This is done by investigating the coagulation efficiency of MO seed extracts for treating moderately turbid water. The research reveals the influence of various factors such as dose, settling time, shelf life, storage temperature, and extractant (water and 1 M NaCl solution) on the coagulation efficiency of MO Lam. protein. The MO seed protein extracts (MOPE) dissolved in tap water, and 1 M NaCl solution was characterised for their performance at ambient temperature and 4 ℃. Within 3 h of MOPE treatment, the turbidity reduced by 90–93 % without significantly altering pH and total dissolved solids (TDS) or electrical conductivity (EC) of the treated water samples. Although the dose rate was found to increase with the storage time, the optimum Moringa oleifera dose was 30–50 mg/l. Overall, the refrigerated MOPE in NaCl offered an extended shelf life, exhibiting good coagulation for up to 7 days compared to 3–4 days for the non-refrigerated variant.Accepted versio

    Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni

    Get PDF
    Background: Campylobacter jejuni is a major zoonotic pathogen, causing gastroenteritis in humans. Invasion is an important pathogenesis trait by which C. jejuni causes disease. Here we report the genomic analysis of 134 strains to identify traits unique to hyperinvasive isolates. Methods: A total of 134 C. jejuni genomes were used to create a phylogenetic tree to position the hyperinvasive strains. Comparative genomics lead to the identification of mosaic capsule regions. A pan genome approach led to the discovery of unique loci, or loci with unique alleles, to the hyperinvasive strains. Results: Phylogenetic analysis showed that the hyper-invasive phenotype is a generalist trait. Despite the fact that hyperinvasive strains are only distantly related based on the whole genome phylogeny, they all possess genes within the capsule region with high identity to capsule genes from C. jejuni subsp. doylei and C. lari. In addition there were genes unique to the hyper-invasive strains with identity to non-C. jejuni genes, as well as allelic variants of mainly pathogenesis related genes already known in the other C. jejuni. In particular, the sequence of flagella genes, flgD-E and flgL were highly conserved amongst the hyper-invasive strains and divergent from sequences in other C. jejuni. A novel cytolethal distending toxin (cdt) operon was also identified as present in all hyper-invasive strains in addition to the classic cdt operon present in other C. jejuni. Conclusions: Overall, the hyper-invasive phenotype is strongly linked to the presence of orthologous genes from other Campylobacter species in their genomes, notably within the capsule region, in addition to the observed association with unique allelic variants in flagellar genes and the secondary cdt operon which is unlikely under random sharing of accessory alleles in separate lineages.Peer reviewe

    Genomic Characterization of Campylobacter jejuni Strain M1

    Get PDF
    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1

    Polymers use as mulch films in agriculture— a review of history, problems and current trends

    Get PDF
    © 2022 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/polym14235062The application of mulch films for preserving soil moisture and preventing weed growth has been a part of agricultural practice for decades. Different materials have been used as mulch films, but polyethylene plastic has been considered most effective due to its excellent mechanical strength, low cost and ability to act as a barrier for sunlight and water. However, its use carries a risk of plastic pollution and health hazards, hence new laws have been passed to replace it completely with other materials over the next few years. Research to find out about new biodegradable polymers for this purpose has gained impetus in the past few years, driven by regulations and the United Nations Organization’s Sustainable Development Goals. The primary requisite for these polymers is biodegradability under natural climatic conditions without the production of any toxic residual compounds. Therefore, biodegradable polymers developed from fossil fuels, microorganisms, animals and plants are viable options for using as mulching material. However, the solution is not as simple since each polymer has different mechanical properties and a compromise has to be made in terms of strength, cost and biodegradability of the polymer for its use as mulch film. This review discusses the history of mulching materials, the gradual evolution in the choice of materials, the process of biodegradation of mulch films, the regulations passed regarding material to be used, types of polymers that can be explored as potential mulch films and the future prospects in the area.This research was funded by the University of Wolverhampton Research Investment Fund (RIF4) and the Commonwealth Scholarship Commission (CSC) UK (reference PKCS-2021-645).Published onlin

    Identification of hyperinvasive Campylobacter jejuni strains isolated from poultry and human clinical sources

    Get PDF
    Campylobacter jejuni causes gastroenteritis with a variety of symptoms in humans. In the absence of a suitable animal model, in vitro models have been used to study virulence traits such as invasion and toxin production. In this study, 113 C. jejuni isolates from poultry and poultry-related (n=74) environments as well as isolates from human cases (n=39) of campylobacteriosis and bacteraemia were tested for invasiveness using INT 407 cells. The method was sufficiently reproducible to observe a spectrum of invasiveness amongst strains. As a result, strains were classified as low, high and hyper-invasive. The majority of strains (poultry and human) were low invaders (82 % and 88 %, respectively). High invasion was found for 5 % of human strains and 11 % of poultry-related isolates. However, only 1 % of poultry strains were classified as hyperinvasive compared to 13 % of human isolates (P=0.0182). Of those isolates derived from the blood of bacteraemic patients, 20 % were hyperinvasive, though this correlation was not statistically significant. An attempt was made to correlate invasiveness with the presence of seven genes previously reported to be associated with virulence. Most of these genes did not correlate with invasiveness, but gene cj0486 was weakly over-represented, and a negative correlation was observed for the gene ciaB. This trend was stronger when the two genes were analysed together, thus ciaB– cj0486+ was over-represented in high and hyperinvasive strains, with low invaders more commonly found to lack these genes (P=0.0064)

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Mechanism-Based Screen for G1/S Checkpoint Activators Identifies a Selective Activator of EIF2AK3/PERK Signalling

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes
    corecore