10 research outputs found

    Phagocytosis and digestion of pH-sensitive fluorescent dye (Eos-FP) transfected E. coli in whole blood assays from patients with severe sepsis and septic shock

    Get PDF
    The function of phagocytic and antigen presenting cells is of crucial importance to sustain immune competence against infectious agents as well as malignancies. We here describe a reproducible procedure for the quantification of phagocytosis by leukocytes in whole blood. For this, a pH-sensitive green-fluorescent protein- (GFP) like dye (Eos-FP) is transfected into infectious microroganisms. After UV-irradiation, the transfected bacteria emit green (≈5160 nm) and red (≈581 nm) fluorescent light at 490 nm excitation. Since the red fluorescent light is sensitive to acidic pH, the phagocytosed bacteria stop emitting red fluorescent light as soon as the phagosomes fuse with lysosomes. The green fluorescence is maintained in the phagolysosome until pathogen degradation is completed. Fluorescence emission can be followed by flow cytometry with filter settings documenting fluorescence 1 (FL 1, FITC) and fluorescence 2 (FL 2, phycoerythrin, PE). Eos-FP transfected bacteria can also be traced within phagocytes using microscopical techniques. A standardized assay has been developed which is suitable for clinical studies by providing clinicians with syringes pre-filled with fixed and appropriately UV-irradiated Eos-FP E. coli (TruCultureℱ). After adding blood or body fluids to these containers and starting the incubation at 37°C, phagocytosis by granulocytes proceeds over time. Cultures can be terminated at a given time by lysing red blood cells followed by flow cytometry. A pilot study demonstrated that Eos-FP E. coli phagocytosis and digestion was up-regulated in the majority of patients with either severe sepsis or septic shock as compared to healthy donors (p < 0.0001 after o/n incubation). Following treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF) in selected patients with sepsis, phagolysosome fusion appeared to be accelerated

    A Human Whole Blood Culture System Reveals Detailed Cytokine Release Profiles of Implant Materials.

    Get PDF
    INTRODUCTION Common in vitro cell culture systems for testing implant material immune compatibility either rely on immortal human leukocyte cell lines or isolated primary cells. Compared to in vivo conditions, this generates an environment of substantially reduced complexity, often lacking important immune cell types, such as neutrophil granulocytes and others. The aim of this study was to establish a reliable test system for in vitro testing of implant materials under in vivo-like conditions. METHODS Test materials were incubated in closed, CO2-independent, tube-based culture vessels containing a proprietary cell culture medium and human whole blood in either a static or occasionally rotating system. Multiplex cytokine analysis was used to analyze immune cell reactions. RESULTS To demonstrate the applicability of the test system to implant materials, three commercially available barrier membranes (polytetrafluoroethylene (PTFE), polycaprolactone (PCL) and collagen) used for dental, trauma and maxillofacial surgery, were investigated for their potential interactions with immune cells. The results showed characteristic differences between the static and rotated incubation methods and in the overall activity profiles with very low immune cell responses to PTFE, intermediate ones to collagen and strong reactions to PCL. CONCLUSION This in vitro human whole blood model, using a complex organotypic matrix, is an excellent, easily standardized tool for categorizing immune cell responses to implant materials. Compared to in vitro cell culture systems used for materials research, this new assay system provides a far more detailed picture of response patterns the immune system can develop when interacting with different types of materials and surfaces

    Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses in vitro

    No full text
    It has been widely shown that biomaterial surface topography can modulate host immune response, but a fundamental understanding of how different topographies contribute to pro-inflammatory or anti-inflammatory responses is still lacking. To investigate the impact of surface topography on immune response, we undertook a systematic approach by analyzing immune response to eight grades of medical grade polyurethane of increasing surface roughness in three in vitro models of the human immune system. Polyurethane specimens were produced with defined roughness values by injection molding according to the VDI 3400 industrial standard. Specimens ranged from 0.1 ÎŒm to 18 Όm in average roughness (Ra), which was confirmed by confocal scanning microscopy. Immunological responses were assessed with THP-1-derived macrophages, human peripheral blood mononuclear cells (PBMCs), and whole blood following culture on polyurethane specimens. As shown by the release of pro-inflammatory and anti-inflammatory cytokines in all three models, a mild immune response to polyurethane was observed, however, this was not associated with the degree of surface roughness. Likewise, the cell morphology (cell spreading, circularity, and elongation) in THP-1-derived macrophages and the expression of CD molecules in the PBMC model on T cells (HLA-DR and CD16), NK cells (HLA-DR), and monocytes (HLA-DR, CD16, CD86, and CD163) showed no influence of surface roughness. In summary, this study shows that modifying surface roughness in the micrometer range on polyurethane has no impact on the pro-inflammatory immune response. Therefore, we propose that such modifications do not affect the immunocompatibility of polyurethane, thereby supporting the notion of polyurethane as a biocompatible material

    Standardized whole blood stimulation improves immunomonitoring of induced immune responses in multi-center study

    No full text
    International audienceFunctional immune responses are increasingly important for clinical studies, providing in depth biomarker information to assess immunotherapy or vaccination. Incorporating functional immune assays into routine clinical practice has remained limited due to challenges in standardizing sample preparation. We recently described the use of a whole blood syringe-based system, TruCultureÂź, which permits point-of-care standardized immune stimulation. Here, we report on a multi-center clinical study in seven FOCIS Centers of Excellence to directly compare TruCulture to conventional PBMC methods. Whole blood and PBMCs from healthy donors were exposed to LPS, anti-CD3 anti-CD28 antibodies, or media alone. 55 protein analytes were analyzed centrally by Luminex multi-analyte profiling in a CLIA-certified laboratory. TruCulture responses showed greater reproducibility and improved the statistical power for monitoring differential immune response activation. The use of TruCulture addresses a major unmet need through a robust and flexible method for immunomonitoring that can be reproducibly applied in multi-center clinical studies

    Intraindividual long term stability and response corridors of cytokines in healthy volunteers detected by a standardized whole-blood culture system for bed-side application

    No full text
    <p>Abstract</p> <p>Background</p> <p>The variation of immune cell activities over time is an immanent property of the human immune system, as can be measured by the stimulated secretion of cytokines in cell cultures. However, inter-individual variability is considerably higher. Especially the latter is the major reason why it has not been possible to establish international standard values for cytokines as was possible for other parameters, such as leukocyte sub-population numbers. In this trial, a highly standardized whole-blood culture model (TrueCulture¼), developed to characterise drug effects on cells of the human immune system in clinical trials, was used to analyse cytokine patterns in the blood samples of 12 healthy subjects over a period of one month.</p> <p>Methods</p> <p>After an overnight fast, 12 healthy subjects donated blood three times a week on three consecutive days over a period of 4 weeks. TruCulture¼ blood collection and whole-blood culture systems were used to measure whole-blood leukocyte stimulation. The levels of IL-2, IL-5, IL-13, IL-6, IL-8, IL-10, IFNγ, and MCP-1 in the culture supernatants were quantified by sandwich ELISA.</p> <p>Results</p> <p>The pattern of cytokine concentrations in the supernatants of the stimulated whole-blood cultures was highly individual, but considerably stable over the whole observation period of 4 weeks.</p> <p>Conclusions</p> <p>By using TruCulture¼ it seems feasible to determine subject-specific cytokine reference patterns, for example under healthy conditions, or before starting an experimental treatment, e.g. during a clinical trial, against which changes in the behaviour of the immune system can be detected more accurately in future.</p

    Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli.

    Get PDF
    International audienceStandardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing

    Functional Analysis via Standardized Whole-Blood Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex Stimuli

    No full text
    corecore