
Immunity

Resource
Functional Analysis via Standardized Whole-Blood
Stimulation Systems Defines the Boundaries
of a Healthy Immune Response to Complex Stimuli
Darragh Duffy,1,2,3,14 Vincent Rouilly,1,4,14 Valentina Libri,1,14 Milena Hasan,1 Benoit Beitz,1 Mikael David,1
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SUMMARY

Standardization of immunophenotyping procedures
has become a high priority. We have developed a
suite of whole-blood, syringe-based assay systems
that can be used to reproducibly assess induced
innate or adaptive immune responses. By eliminating
preanalytical errors associated with immune moni-
toring, we have defined the protein signatures
induced by (1) medically relevant bacteria, fungi,
and viruses; (2) agonists specific for defined host
sensors; (3) clinically employed cytokines; and (4)
activators of T cell immunity. Our results provide an
initial assessment of healthy donor reference values
for induced cytokines and chemokines andwe report
the failure to release interleukin-1a as a common
immunological phenotype. The observed naturally
occurring variation of the immune response may
help to explain differential susceptibility to disease
or response to therapeutic intervention. The imple-
mentation of a general solution for assessment of
functional immune responses will help support
harmonization of clinical studies and data sharing.

INTRODUCTION

The immune system is responsible for maintaining a healthy

state, ensuring beneficial cohabitation with microbiota, and pre-
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venting infection. Immune system dysfunction is often associ-

ated with increased susceptibility to infection, inflammation,

autoimmunity, or even development of cancer. Moreover, indi-

vidual heterogeneity in the immune response can have important

medical consequences, such as the likelihood to respond to

anti-infectious therapy, the efficiency of vaccine administration,

or the development of side effects secondary to treatment.

Because of the complexity of immune responses at both the in-

dividual and population level, it has not been possible, thus far, to

define the boundaries of a ‘‘healthy immune response’’ or its

naturally occurring variability. Most studies have taken a dis-

ease-based approach, from which considerable insight into

immune mechanisms has been obtained. Nonetheless, to utilize

this information in diagnosis and disease management, the

assessment of a healthy functional immune response within

the human population is required. Specifically, there is an

unmet need for reliable and reproducible assay systems for

studying human immune responsiveness. In other words, we

must overcome technical challenges and preanalytical error in

order to assess the true variability in functional immune re-

sponses. Only then will immunologists be positioned to

contribute to the promises of personalized medicine, applying

simple-to-use technologies that provide in-depth understanding

of the phenotypic variance of immune responses in the human

population.

Human innate or adaptive immune responsiveness is typically

studied in vitro, thereby permitting the evaluation of multiple

stimulation conditions in parallel. Standard laboratory practice

is to transport collected blood to a centralized facility, thereby

allowing isolation of peripheral blood mononuclear cells

(PBMCs) by Ficoll-Hypaque gradient centrifugation by trained
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personnel (Folds and Schmitz, 2003). Stimulation can be per-

formed immediately, but often cells are cryopreserved in order

to batch test samples (Maecker et al., 2012). In addition to this

process being labor intensive, there is a risk of sample contam-

ination by microbial components (e.g., bacterial endotoxin).

Moreover, sample handling results in variable loss of cells and

cryopreservation diminishes functional responsiveness, also in

a nonlinear and/or nonreproducible way (Chen et al., 2010).

Although whole-blood human lymphocyte assays were first

innovated in 1975 (Eskola et al., 1975), they have not been

widely used in scientific research or clinical evaluation of func-

tional immune responses. Notably, direct measurements made

in whole blood have the advantages of minimizing contamina-

tion and sample handling. Moreover, maintaining total leuko-

cytes (e.g., polymorphonuclear cells) and platelets in a plasma

matrix may provide a more accurate reflection of natural respon-

siveness to immune stimuli (Chen et al., 2010; De Groote et al.,

1992; Ida et al., 2006; Kirchner et al., 1982; Schmolz et al.,

2004).

Herein, we report the development of 27 whole-blood stimu-

lation systems, built into syringe-based medical devices that

may be utilized in point-of-care approaches and tested in 25

ethnically well-defined individuals of European ancestry. With

these stimulation conditions, we define the boundaries of

a healthy immune response to complex stimuli (i.e., whole

microbes), including gram-negative bacteria, gram-positive

bacteria, mycobacteria, fungi, and live viruses (Krishna and

Miller, 2012; Miettinen et al., 2008; Stuyt et al., 2003; Stuyt

et al., 2001; Zhao et al., 2007). In addition, we developed assay

systems to study the response to purified or synthetic ligands

for the major innate host response pathways, including those

triggered by the Toll-like receptors (TLRs) (Alexopoulou et al.,

2001; Diebold et al., 2004; Gantner et al., 2003; Godaly and

Young, 2005; Hayashi et al., 2001; Hemmi et al., 2000, 2002;

Jurk et al., 2002; Liu-Bryan et al., 2005; Takeuchi et al., 1999;

Zhao et al., 2007), nucleotide-binding domain and leucine-rich

repeat containing molecules (NLRs) (Allen et al., 2009; Ichinohe

et al., 2009), and C-type lectin-like receptors (CLRs) (Brown

et al., 2003). To directly evaluate the variable responses after

cytokine receptor signaling, we also tested several clinically

employed cytokines such as interferon-alpha (IFN-a), inter-

feron-beta (IFN-b), interferon-gamma (IFN-g), tumor necrosis

factor-alpha (TNF-a), interleukin 1-beta (IL-1b), and interleukin

23 (IL-23) (Dinarello, 2012; González-Navajas et al., 2012; Opp-

mann et al., 2000; Platanias, 2005; Zheng et al., 2013). Finally,

we utilized direct T cell receptor cross-linking (anti-CD3+anti-

CD28) and super-antigen stimulation as two distinct mecha-

nisms for eliciting T cell activation (Smith-Garvin et al., 2009).

By quantifying the stimulus-induced production of cytokines,

chemokines, and growth factors, it was possible to establish

specific protein signatures for each stimulation system and we

establish reference values as well as an estimate of variation

among healthy individuals originating from a homogeneous

ethnic background. These tools and the data set provided will

be a valuable resource for the immunologic community. More-

over, we propose that through coordinated use of validated

assay systems and open sharing of data sets, it will be possible

to rapidly implement measures of functional immune respon-

siveness into clinical studies and medical practice.
RESULTS

Reproducible Whole-Blood Assays for Assessing Innate
and Adaptive Immune Responses
To establish in vitro assay systems that preserve physiological

cellular interactions, we developed syringe-based medical de-

vices that can be used for activating immune cells present in

whole blood. Fifty-four stimuli were considered for study and

evaluated for sterility, solubility, dose response, short and

long-term stability, and reproducibility (exclusion criteria are

detailed in Supplemental Experimental Procedures available on-

line). Based on initial testing, we prioritized 27 stimuli for devel-

opment in TruCulture whole-blood collection and culture devices

(Myraid RBM) (Table 1). In brief, during the manufacturing

process (certified according to ISO 13845) of the TruCulture

collection syringes, the indicated stimuli were dissolved in the

proprietary TruCulture cell medium (2 ml per tube). These

TruCulture systems were then frozen and stored at �20�C until

use. After thawing to room temperature, the collection syringes

were filled with 1 ml whole blood and incubated for 22 hr

(±10min) in room air at 37�C (±1�C), utilizing a bench-top heating

block (VLMH GmbH). After immune stimulation, insertion of a

valve separator (an integral part of the TruCulture system)

yielded a culture supernatant that was aliquoted and stored

at�80�C for subsequent multiplex protein immunoassay testing

(Figure S1A).

For all stimuli, we selected low and highly induced protein

analytes that could be measured and used for dose-finding

studies. We selected dose concentrations for the stimuli that

maximized the ability to detect low-expressed proteins, while

taking precautions not to exceed the upper limit of the biologic

range for highly expressed proteins. Representative data for

one microbe, MAMP, and T cell stimulus is shown (Figure S1B),

and the selected dose for all assays can be found in Table 1. We

further validated our assay systems by serially testing individual

responsiveness to immune stimulation, repeating the measure-

ments four times at the same time point (Figure S1C) and four

times over a 25-day time period (Figure S1D). As represented

by the data of lipopolysaccharide (LPS)-induced responses, 25

of the 27 stimuli induced protein signatures with intraindividual

coefficients of variance (CVs) ranging from 5 to 14 (Figure 1D,

Table S1, and data not shown). The two exceptions were calcium

pyrophosphate dihydrate crystals (CPPD) and whole glutan par-

ticles (WGPs), both of which are particulate agonists that were

difficult to homogenize in liquid suspension and resulted in

higher technical variation (Table S1). Regarding the response

to LPS (Figure S1D), substantial variability could be observed

among the three donors tested. Donor G showed high levels of

IL-6 but intermediate induction of IFN-g. By contrast, donor H

showed the highest production of IFN-g but the lowest induction

of IL-6. Additional quality-control data, including selection of

anticoagulant used, can be found in the Supplemental Experi-

mental Procedures and Table S2.

Quantitative and Qualitative Differences in Healthy
Donor Responses to Immune Stimulation
To demonstrate the utility of our whole-blood stimulation sys-

tems, we recruited 25 healthy volunteers of European ancestry,

aged 30–39 and stratified by gender (13 women, 12 men).
Immunity 40, 436–450, March 20, 2014 ª2014 Elsevier Inc. 437



Table 1. Innate and Adaptive Immune Stimuli Used for Development of Whole-Blood Stimulation Systems

Stimulus Abbreviation Concentration Supplier Sensor or Receptor Reference

Null Ø NA

Microbe

HK E. coli 0111:B4 HKEC 107 bacteria Invivogen complex Takeuchi et al., 1999

HK S. aureus HKSA 107 bacteria Invivogen complex Krishna and Miller, 2012

HK L. rhamnosus HKLR 107 bacteria Invivogen complex Miettinen et al., 2008

BCG (Immucyst) BCG 3 3 105 bacteria Sanofi Pasteur complex Means et al., 1999; Godaly and Young,

2005; Randhawa et al., 2011

HK H. pylori HKHP 107 bacteria Invivogen complex Zhao et al., 2007

HK C. albicans HKCA 107 bacteria Invivogen complex Brown et al., 2003; Gantner et al., 2003

Influenza A virus (live) IAV 100 HAU Charles Rivers complex Diebold et al., 2004; Kato et al., 2006;

Ichinohe et al., 2009; Allen et al., 2009

Sendai virus (live) SeV 10 HAU Charles Rivers Rig-I and Mda/5 Yoneyama et al., 2005; Kato et al., 2005

MAMP

C12-iE-DAP DAP 4 mg/ml Invivogen NOD1 Chamaillard et al., 2003

CPPD CPPD 100 mg/ml Invivogen NLRP3 and TLR2 Liu-Bryan et al., 2005; Martinon et al.,

2006

FSL-1 FSL 2 mg/ml Invivogen TLR2/6 Shibata et al., 1997; Okusawa et al.,

2004

Poly I:C pIC 20 mg/ml Invivogen TLR3 Alexopoulou et al., 2001

LPS-EB (ultrapure) LPS 10 ng/ml Invivogen TLR4 Poltorak et al., 1998; Shimazu et al.,

1999

Flagellin-ST FLA 0.25 mg/ml Invivogen TLR5 Hayashi et al., 2001

Gardiquimod GARD 3 mM Invivogen TLR7 Hemmi et al., 2002

R848 R848 1 mM Invivogen TLR7 and TLR8 Jurk et al., 2002

ODN 2216 ODN 25 mg/ml Invivogen TLR9 Hemmi et al., 2000; Krieg, 2002

lipoarabinomannan LAM 10 mg/ml Invivogen Mannose R, CD36 Józefowski et al., 2011; Sieling et al.,

1995

WGP WPG 40 mg/ml Invivogen Dectin-1 Goodridge et al, 2011

Cytokines

IFN-a2b (Intron A) IFN-A 1,000 IU/ml Merck IFNAR González-Navajas et al., 2012

IFN-b (Betaseron) IFN-B 1,000 IU/ml Bayer IFNAR González-Navajas et al., 2012

IFN-g (Imukin) IFN-G 1,000 IU/ml Boehringer Ingelheim IFNgR Platanias, 2005

TNF-a TNF-A 10 ng/ml Miltenyi Biotech TNFR Kolb and Granger, 1968

IL-1b IL-1B 25 ng/ml Peprotec IL1R March et al., 1985

IL-23 IL-23 50 ng/ml Miltenyi Biotech IL23R Oppmann et al., 2000

T Cells

a-CD3 +

a-CD28

CD3+CD28 0.4 mg/ml +

0.33 mg/ml

RND Systems +

Beckman Coulter

TCR Smith-Garvin et al., 2009

Enterotoxin SEB SEB 0.4 mg/ml Bernhard Nocht

Institute

TCR and MHC II Fleischer and Schrezenmeier, 1988

Abbreviations are as follows: HK, heat killed; HAU, hemaggluttanin units; IU, international units.

The 28 stimulation conditions used for the preparation of TruCulture tubes are listed, with the indicated dose and commercial supplier. Stimuli are

ordered based on four categories: whole microbe, MAMP, cytokine, and T cell agonist. See also Figure S1 and Tables S1, S2, S3, and S4.
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Samples were collected, processed, and analyzed as described

(Figure S1A). Luminex assays employed in the study are listed

and the lower limit of quantification (LLOQ) and least detectable

doses (LLD) for each assay are indicated (Table S3). In order to

assess the overall signatures induced in the 28 conditions, we

plotted the concentration of the measured analytes across all

donors (four representative stimulation systems are shown:

HKEC, LPS, IL-1b, and CD3+CD28, with the null response over-

layed in each graph; Figure 1). Notably, we achieved a range of
438 Immunity 40, 436–450, March 20, 2014 ª2014 Elsevier Inc.
induced biologic responses, spanning, in some instances,

greater than 1,000-fold as compared to the null condition (e.g.,

IL-6, MIP-1a). Importantly, the stimulations achieved by the

assay systems did not exceed the measured biologic limit (as

defined by a plateau in the response of selected analytes), and

a broad range of induced protein responses were observed.

Several protein analytes remained unchanged across all stimula-

tion systems (i.e., IL-7, MMP-3, and sICAM-1) and were there-

fore removed from further analysis.



Figure 1. Dynamic Range of Stimulation

Systems

Box-whisker plots indicate the induced protein

response for 25 healthy donors for 4 representative

stimuli: HKEC (A), LPS (B), IL-1b (C), and

CD3+CD28 (D). Induced responses are in red, and

the null response is overlaid in gray. Protein analy-

tes are reported in pg/ml and listed alphabetically.

The median is represented by the horizontal line,

the interquartile range (IQR) by the box, and the

whiskers represent 1.53 IQR.Databeyond theend

of the whiskers are outliers and plotted as points.
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We next analyzed the data by unsupervised principal compo-

nent analysis (PCA), employing Qlucore Omics Explorer 2.3

(Andersson et al., 2005). Prior to applying PCA, values for each

of the 29 protein analytes were centered to a mean value of

zero and scaled to unit variance. The 27 stimuli and null control

are indicated by the filled circles and the vector position of
Immunity 40, 436–45
each of the 25 donors is represented (Fig-

ure 2A). The PCA revealed strong stimuli-

specific clusters, with the first three

principal component (PC) vectors ex-

plaining 57%of the total variance (Figures

2A and 2B). Highlighting the presence of a

common, core signature for the induced

innate response, we found that PC1 is

composed by the contribution of chemo-

kines and cytokines: MIP-1a, MIP-1b,

TNF-a, IL-6, IL-8, IL-10, IL-1RA, and

MCP-1. Interestingly, PC2 separated

stimuli that induced an adaptive immune

signature and was mainly driven by IL-5,

IL-2, GM-CSF, and IL-4. Stimuli that

were directed toward the second prin-

cipal component axis included

CD3+CD28, SEB, and to a lesser extent

Candida albicans (HKCA), bacillus Calm-

ette-Guerin (BCG), and Staphylococcus

aureus (HKSA). PC3 was composed of

IL-12p70 and IP-10 as induced analytes

and Factor-VII as a suppressed factor.

The signature achieved by pIC stimula-

tion could be easily separated across

this third principal component axis. Illus-

trating how the calculated vectors relate

to the overall PCA, we superimposed

expression data for the top analyte of

each vector on the PCA plot (Figure 2C).

To further validate our approach and

to explore the underlying architecture

of the PCA, we focused on the two T cell

stimulation systems: CD3+CD28 and

SEB stimulation. When analyzed sepa-

rately, the two stimulation conditions

could be easily distinguished with a

PCAplot that was based on 12 protein an-

alytes that showed statistical differences
(CD3+CD28 versus SEB, MW q value < 0.05) (Figures 3A–3C

Interestingly, CD3+CD28 and SEB induced similar amounts of

T cell cytokines (e.g., IL-4, IL-5); however, the distinct mecha-

nisms of activation—unique action on the TCR signaling pathway

as compared to cross-linking ofMHCII and the TCR, respectively

(Fleischer and Schrezenmeier, 1988)—accounted for higher
0, March 20, 2014 ª2014 Elsevier Inc. 439



Figure 2. Distinct Inflammatory Signatures for Stimulation Systems

(A) Principal component analysis (PCA) was performed on the data set obtained from 25 healthy donors. Each colored circle represents one of the 28 different

whole-blood stimulation conditions, and the PCA was run with data obtained from the analysis of 29 proteins. The PCA plot shown captures 57% of the total

variance within the selected data set (PCA1, 36%; PCA2, 13%; PCA3, 8%).

(B) The contribution of each protein analyte to the three principal component axes of the PCA plot are shown. (The positioning of the bars is arbitrary and is not

considered negative or positive except in relation to the other analytes.)

(C) The protein analyte contributing most strongly to each of the three principal component axes was overlaid on the PCA plot. A heat map indicates the relative

expression of the indicated protein analyte (red indicating high levels of expression, green indicating low levels of expression).
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Figure 3. CD3+CD28 and SEB Induce

Distinct Inflammatory Signatures

(A) Principal component analysis (PCA) was per-

formed on the data set obtained from 25 healthy

donors for the response to CD3+CD28 (green

circles) and SEB (blue circles) stimulation systems,

and discriminating protein analytes (q value

[ANOVA FDR adjusted p value] < 0.05) were

incorporated in the analysis. The PCA plot shown

captures 90% of the total variance within the

selected data set.

(B) The induced responses to whole-blood stimu-

lations with CD3+CD28 and SEB were compared

and the 12 differentially expressed proteins were

identified (ANOVA q value < 0.05).

(C) The contribution of each protein analyte to the

three principal component axes of the PCA plot are

shown. (The positioning of the bars is arbitrary and

is not considered negative or positive except in

relation to the other analytes.)

(D) Correlation plots highlight differentially and

similarly expressed proteins after whole-blood

stimulations with CD3+CD28 (open green circles)

or SEB (closed blue circles).

(E) Pairwise comparison for IL-6 and IL-4 con-

centration is shown after whole-blood stimulations

with CD3+CD28 and SEB. Black lines indicate

individual donors. Red star highlights non-

responders to CD3+CD28 stimulation.

(F) The number of CD3+ T cells per ml of whole

blood in CD3+CD28-positive and -negative re-

sponders.

See also Figure S2.
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concentrations of SEB-induced IL-6, IL-8, MCP-1, and IL-1b

(Figure 3D). This was confirmed experimentally by intracellular

flow cytometry staining, which showed that after SEB, but not

CD3+CD28 stimulation, the MHCII-expressing monocytes were

induced to express IL-8, MCP-1, and IL-1b protein (Figure S2).

Interestingly, we observed that 6 of the 25 donors failed to pro-

duce IFN-g, IL-2, IL-4, or IL-6 in response to CD3+CD28 stimula-

tion, whereas all donors were capable of responding to SEB (Fig-

ures 3D and 3E). These data highlight the ability to reliably

measure cell-cell interactions within the whole-blood stimulation

conditions. Moreover, this approach permitted the identification

of healthy donors that were unable to respond fully to anti-CD3

(clone UCHT1) stimulation, despite the binding of the antibody

to donor T cells as confirmed by flow cytometry (Figure 3F).

Distinct Inflammatory Signatures Induced by Whole
Microbes, Microbe-Associated Agonists, or Cytokine
Stimulation
Complex stimuli used in our stimulation systems included

heat-killed Escherichia coli O111:B4 (HKEC), Staphylococcus
Immunity 40, 436–45
aureus (HKSA), Lactobacillus rhamnosus

(HKLR), Helicobacter pylori (HKHP), and

Candida albicans (HKCA). Additionally,

we utilized the clinical preparation of live

bacillus Calmette-Guerin (BCG) and live

stocks of H1N1 attenuated influenza

A/PR8 (IAV) and Sendai virus (SeV)
(Table 1). The E. coli used was derived from a strain that causes

acute diarrhea in babies (Viljanen et al., 1990). H. pylori is also a

human pathogen and is the main cause of ulcer disease and

stomach cancer in humans (Wroblewski et al., 2010). Healthy

donors may be carriers for S. aureus or C. albicans, but in

some instances these agents may be the cause of human dis-

ease (e.g., in immunologically compromised individuals) (Gow

et al., 2012; Otto, 2009). BCG is used as a vaccine in order to pro-

tect humans from childhood tuberculosis and is the standard of

care for treatment of bladder cancer (NB: all donors received

BCG vaccination) (Kawai et al., 2013; Romano and Huygen,

2012). L. rhamnosus is considered to be a transient inhabitant

of humans and is present in some yogurt preparations (Borriello

et al., 2003).Most humans are exposed toH1N1 IAV as a result of

seasonal epidemics or through vaccination; and to serve as a

contrast to IAV, we selected SeV, which does not infect humans

yet triggers an innate inflammatory response (Kato et al., 2005;

Norrby et al., 1992).

To characterize the patterns of protein analytes induced by

such complex stimuli, we performed hierarchical clustering and
0, March 20, 2014 ª2014 Elsevier Inc. 441
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focused on the 18most highly discriminating read-outs, all with a

q value < 10�30 (Figures 4A and 4B). This approach separated

IAV and SeV from the other stimuli, based on the induction of

high IP-10 levels. HKEC was the most potent stimulus, marked

by the highest levels of the pyrogenic cytokines TNF-a, IL-6,

and IL-1b, as well as high levels of IL-12p40 and IL-23 (Figures

4A and S3). There was some overlap among the donor re-

sponses to HKCA, HKSA, HKLR, and BCG, but distinct patterns

could be discerned. HKCA induced high amounts of GM-CSF in

20 of 25 donors, significantly higher than any other microbial

stimulus (KW p < 1 3 10�7). As observed in the overall PCA

plot (Figure 2), we could discriminate HKSA, BCG, and HKCA

based on their induction of IL-2, possibly a reflection of our donor

population having been previously exposed to these microbial

agents (Figures 4A and S3). We also noted an interesting pattern

of expression for IL-12p40, IL-12p70, and IL-23; most stimuli

triggered IL-12p40, but only HKEC triggered IL-12p70 in a large

number of donors (16 of 25) (Figure S3). Additionally, for some

stimuli there appeared to be a bimodal pattern of induced

responses, in particular the HKHP-, IAV-, and SeV-induced

TNF-a and IL-12p40 and the HKEC-, HKLR-, HKCA-, IAV-, and

SEV-induced IL-2 response (Figure S3).

We next selected the TLR agonists for analysis, because we

achieved extensive coverage of this class of host sensors

(Table 1). With the exception of the TLR1-TLR2 heterodimer,

we were able to validate stimulation systems for the known

TLR receptors expressed by humans (NB: Pam3CSK4 was eval-

uated, but failed short-term stability testing). FSL-1 (FSL, and

also known as Pam2C) is a synthetic diacylated lipoprotein

mimicking an agonist present in Mycoplasma salivarium (Oku-

sawa et al., 2004). A high-molecular-weight, vaccine-grade

poly IC (pIC) was used to activate TLR3. Ultrapure lipopolysac-

charide (LPS) derived from E. coli O111:B4was used to stimulate

TLR4. For TLR5, we selected ultrapure flagellin (FLA), extracted

from Salmonella Typhimurium. To uniquely stimulate TLR7, we

utilized the vaccine-grade preparation of Gardiquimod (GARD),

an imidazoquinoline compound, and we used a related mole-

cule, R848 (also vaccine-grade) as a stimulator with mixed

agonist activity for TLR7 and TLR8. The TLR9 agonist selected

was the class A CpG-2216 oligonucleotide (ODN), a fully syn-

thetic oligonucleotide that contains unmethylated CpG dinucle-

otides within a particular sequence.

As shown in the PCA plot, it was possible to segregate the TLR

stimuli based on the induced protein signatures. We selected the

11 most significant proteins (identified by ANOVA, q value <

10�60), which allowed us to capture 93% of the measured vari-

ance in the response to TLR stimulation (Figure 5A). The notable

exception was the overlap between FSL and FLA, which may be

explained by the similar cellular expression of TLR2/6 and TLR5

on circulating monocytes (Mäkelä et al., 2009) and the use of a

common MyD88-dependent signaling pathway (Takeda et al.,
Figure 4. Unique Inflammatory Signatures Induced by Complex Microb

(A) Hierarchical clustering was performed on the data set obtained from 25 health

E. coli (HKEC), HK S. aureus (HKSA), HK L. rhamnosus (HKLR), bacillus Calmette

(IAV), and Sendai virus (SeV). A heat map is shown, based on the 18 most differe

(B) The 18 most differentially expressed proteins that were used to define micro

(cutoff value was determined by ANOVA, q value < 10�30).

See also Figure S3.
2003). R848 and GARD also showed a similar signature, yet

the two could be segregated based on the overall higher levels

of induced cytokines/chemokines and the increased number of

donors that produced IL-12p70 to GARD (Figure S4A), a likely

reflection of TLR8 engagement on monocytes (Bekeredjian-

Ding et al., 2006). LPS triggered the strongest inflammatory

response, as shown by the significantly higher levels of pyro-

genic cytokines induced (TNF-a, IL-1b, and IL-6 higher for LPS

as compared to the other stimuli, KW p < 13 10�7, Figure S4A).

One caveat was a sampling bias in the selection of analytes

measured, because the Luminex panels were oriented toward

LPS-induced responses. We also highlight the relatively weak

response induced by ODN, which we believe results from the

agonist being quenched by the whole-blood matrix. Alterna-

tively, it could be a reflection of the low numbers of plasmacytoid

dendritic cells that are present within 1 ml of whole blood. How-

ever, upon removal of ODN from the analysis, the remaining TLR

ligands kept their unique position (apart from FSL and FLA) within

the PCA and a similar level of variance (94%) was captured

(Figure S4B). In addition, we were able to distinguish ODN

from the null condition based on eight analytes (ODN versus

null, MW q < 0.05; Figures S4C and S4D), with the most induced

protein being IP-10, a reflection of type I IFN being produced as a

result of TLR9 stimulation (Krug et al., 2004). From the initial PCA

plot (Figure 2), pIC stimulation could be distinguished by its

unique inflammatory signature. This is recapitulated when pIC

is compared to the other TLR agonists; the pattern of protein

expression being remarkable for the high levels of IL-12p70

and the complete absence of induced IL-10. A bimodal distribu-

tion was again seen for some cytokines; in particular, a certain

number of donors failed to produce IL-12p40 after FSL, FLA,

or ODN and others did not produce IL-12p70 after LPS or

R848 (Figure S4A).

To provide insight into the variable response to stimulation

via cytokine receptors, we exposed cells to IFN-a2a, IFN-b,

IFN-g, TNF-a, IL-1b, or IL-23. The latter four cytokines were

also measured as one of the proteins assessed in the multiplex

luninex assays. As such, we had an internal control that donors

were stimulated with similar cytokine concentrations; addition-

ally, it was important to exclude the measured variable from

the stimulation signature (Figures S5). As expected because

of their use of the same IFN-a/b receptor, the signatures for

IFN-a2a and IFN-b were identical and also similar to that seen

for IFN-g, which induces a common set of interferon-stimulated

genes (ISGs) and proteins (Der et al., 1998). These data also

permit deconvolution of some of the more complex signatures.

For example, we highlight that pIC results in the induction of

both TNF-a and IL-1b (Figure S4), both of which can induce

IL-10 when they are used as stimuli (Figures S5); yet there

was a clear absence of IL-10 induction upon pIC stimulation

(Figure S4). Although this may be a reflection of lower levels
ial Stimulation

y donors, restricting the analysis to whole-blood stimulation by heat-killed (HK)

-Guérin (BCG), HK H. pylori (HKHP), HK C. albicans (HKCA), influenza A virus

ntially induced proteins as defined by ANOVA q values.

be stimulation-specific signatures are listed in order of statistical significance
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Figure 5. Segregation of TLR Agonists Based on Their Induced Protein Signatures

(A) Principal component analysis (PCA) was performed on the data set obtained from 25 healthy donors. Analysis was restricted to the 7whole-blood stimulations

that contained TLR agonists (FSL, pIC, LPS, FLA, GARD, R848, ODN). Each colored circle represents a different whole-blood stimulation condition, and

the PCA was run with the 11 most differentially induced proteins (cutoff value was determined by ANOVA, q value < 10�60). The PCA plot shown captures

85% of the total variance within the selected data set. Expression levels for each of the 11 protein analytes was overlaid on the PCA plot. A heat map indicates

(legend continued on next page)
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of pIC-induced TNF-a and IL-1b, we favor the interpretation

that TRIF activation or perhaps the high levels of STAT1 sig-

naling results in suppression of IL-10 expression (Saraiva and

O’Garra, 2010).

Characterization of Naturally Occurring Variance to
Immune Stimulation
The development of reliable stimulation systems for monitoring

immune responses permits the establishment of reference

ranges for healthy individuals. Moreover, it permits the classifi-

cation of inflammatory and host immune responses based on

the variability among healthy donors as well as the identification

of responses outside the defined reference range. To rapidly

visualize variance among our 25 donors, we plotted the induced

responses on a radar plot (Figure 6): absolute concentrations of

the induced proteins are plotted along the spokes of the plot;

lines trace the induced protein signature from individual donors;

the shaded gray polygon indicates the median value of the null

condition; and the black circles mark the induced fold change

over the median null value. Data have been sorted so the least

induced protein is at the top of the radar plot, with increasing

fold change plotted in a clockwise manner. Analytes were

excluded from the signature if the absolute value of the median

fold change (stimulation/null) was <1.3. Data from the LPS stim-

ulation system are shown and all plots can be found as an online

Excel file (Document S2).

For the LPS-induced signature, we highlight that several

induced cytokines and chemokines showed limited interindi-

vidual variance (CV < 50%). By contrast, other analytes showed

high variance; for example, IL-12p70 and IFN-g showed a

range that spanned more than two orders of magnitude with

CVs of 106% and 132%, respectively (Table S4). Additionally,

this representation permitted the identification of two individ-

uals that were outliers in their failure to produce measurable

amounts of IL-1a in response to LPS (red star, Figure 6A).

Notably, the rest of the signature was intact. To explore this

finding further, we studied induced IL-1a across the entire stim-

ulation space. Data from four consecutive donors are shown

(including one of the outlier individuals identified), and we

compared the response for three proteins that showed a high

correlation (IL-1a, IL-1b, and IL-6). Expression of the IL-1 re-

ceptor antagonist (IL-1Ra) is also shown, because it is involved

in the IL-1 pathway. Strikingly, none of the stimuli used trig-

gered detectable levels of IL-1a production by donor 203 (or

donor 312, not shown); this was in contrast to the induction

of IL-1b and IL-6, which was within the range of values reported

for the other donors tested (Figure 6B and Table S4). Given the

importance of IL-1a in sterile inflammation and disease patho-

genesis, we believe that our findings will be of general interest.

Moreover, we highlight the value of utilizing standardized mea-

sures for host immune responses, thus enabling the identifica-

tion of interindividual variance and extreme phenotypes among

human populations.
the relative expression of the indicated protein analyte (red indicating high levels o

are reported.

(B) The contribution of each protein analyte to the three principal component axe

considered negative or positive except in relation to the other analytes.)

See also Figure S4.
DISCUSSION

The definition of host immune responses tomicrobial agents is of

major interest and facilitates an increased understanding of hu-

man health and disease pathogenesis. Although functional tests

are routinely used in laboratory investigation (Folds and Schmitz,

2003), the standardization of assays has been challenging.

Indeed, there exist few examples of standardized systems for

measuring induced immune response in human population-

based studies or clinical practice. This study aimed at testing

whole-blood stimulation systems for medically relevant stimuli

to determine the inflammatory signature and characterize the

naturally occurring variation present in a population of healthy

donors of European descent. The robust definition of the bound-

aries of a healthy immune response at the population level is an

indispensable prerequisite to subsequently understand how per-

turbations in these responses correlate and in some instances

account for a pathologic state. Our approach utilizes a practical

solution to monitoring induced immune responses and requires

only 1 ml of blood per stimulation system and a 37�C heating

block, maintained in room air. Additionally, there is minimal

sample handling and specialized technical experience is not

required.

The concept of utilizing whole-blood assays for assessing

leukocyte function was first introduced by Ruuskanene and col-

leagues in 1975 (Eskola et al., 1975), used at that time for moni-

toring PHA and ConA-induced lymphocyte proliferation. Digel

and colleagues extended this approach to the study of cytokines

in 1983 (Digel et al., 1983), reporting the use of whole-blood stim-

ulation with SEA and anti-CD3 antibodies, followed by the mea-

surement of type I and type II interferons. Over the last three

decades, whole-blood cultures have been utilized for probing

various aspects of the immune response (Chen et al., 2010; De

Groote et al., 1992; Ida et al., 2006; Kirchner et al., 1982; Nerad

et al., 1992; Pott et al., 2009). However, several problems have

persisted, including the ill-defined period of time between blood

draw and cell culture and the requirements for specialized lab

equipment (e.g., tissue culture hoods, CO2 incubators). One

notable exception has been the clinical development of the

QuantiFERON TB Gold In-Tube (QFT-G IT) assay (Santin et al.,

2012), which has been approved for the diagnosis of latent

tuberculosis infection. QFT-G IT measures the induction of

IFN-g production in whole blood after in vitro stimulation with

Mycobacteria tuberculosis antigens.

In this study, we report the development and testing of 27

stimulation systems, built into whole-blood syringes. We aimed

to test our assay system via a broad array of immune stimuli,

including bacteria, fungi, and viruses; agonists specific for

defined innate immunity sensors; clinically employed cytokines;

and activators of T cell immunity. With the exception of two

assay systems (CPPD and WGP), the coefficient of variance

was low, in the range of 5%–14%, with long-term stability of

up to 12 months. The endpoints chosen for evaluating the
f expression, green indicating low levels of expression). ANOVA p and q values

s of the PCA plot are shown. (The positioning of the bars is arbitrary and is not
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inflammatory signature consisted of a selection of inducible cy-

tokines, chemokines, and growth factors. Importantly, dose-

finding studies ensured that the induced responses did not

exceed the biologic limit, as indicated by the broad range of an-

alyte concentrations observed across the different stimulation

conditions. Unique, specific signatures were identified for most

stimulation systems. As an initial validation of lymphocyte activa-

tion, we observed an expected T cell signature (e.g., induction of

IL-5, IL-2, GM-CSF, IL-4) when using anti-CD3 and anti-CD28 or

SEB stimulation. These two signatures were clearly separated

from the other stimuli in the global analysis and could be distin-

guished from each other, a result of SEB activation of MHCII-ex-

pressing cells. We also identified six healthy donors who failed to

respond to CD3+CD28 stimulation despite binding of the CD3

antibody to T cells. This confirmed earlier reported findings

and might be due to polymorphisms in the FcgRII expressed

by monocytes (Ceuppens et al., 1985; Tax et al., 1983) that

bind mouse IgG1 (the subclass of the UCHT-1 anti-CD3 clone

used), or it might be due to other as yet unidentified common

genetic variants. Interestingly, we also observed a modest

‘‘lymphocyte’’ signature when we utilized BCG, HKSA, and

HKCA stimulation. Specifically, these three stimuli induced low

levels of IL-2, which was not observed when we used HKEC,

HKLR, or HKHP.

When directly comparing whole microbes, we could identify

clear signatures for HKEC (strong induction of pyrogenic cyto-

kines and high expression of both IL-12p70 and IL-23), HKCA

(based on the stimulation of GM-CSF expression), and the two

viral stimuli, IAV and SeV (triggering the highest levels of IP-10).

Notably, the interindividual variance was highest for microbial-

induced IL-2 and IFN-g (CV in range of 78%–165%, 60%–

183%, respectively), HKEC-induced IL-12p70 (CV = 155%),

HKHP-induced IL-10 (CV = 216%), and BCG or HKCA-induced

GM-CSF (CV = 175% and 216%, respectively). These differ-

ences are presumed to be due to a combination of host genetic

factors and environmental, both internal and external, exposures

(Newport et al., 2004). We may also consider that prior exposure

and/or carrier state (e.g., colonization by HKCA) might account

for differential memory responses (e.g., lymphocyte activation

or antibody opsonization of the microbe) (Zielinski et al., 2012),

in turn impacting the magnitude of the inflammatory response.

We also highlight the relatively weak response to HKHP stimula-

tion, which is probably due to the bacterium harboring an exten-

sivelymodified lipid Amoiety as part of its LPS,which reduces by

>1,000-fold its TLR4 agonist activity (Cullen et al., 2011) and a

flagellin that is poorly recognized by TLR5 (Gewirtz et al., 2004;

Lee et al., 2003). Furthermore, stimulation of TLR2 by H. pylori

mediates a tolerogenic response (Sun et al., 2013), potentially

contributing to the weak response induced by HKHP.
Figure 6. Interindividual Variance in the Response to LPS Stimulation

(A) Radar plot representation of the LPS-induced response obtained from 25 he

ordered clockwise in increasing fold change (as compared to null). Each donor is re

analytes. The gray polygon depicts the median value of the null response for the 2

of the null response. Analytes with amedian fold change (stimulation/null) >1.3 or <

which IL-1a was not induced above background.

(B) Histogram plots representing the IL-1a, IL-1b, IL-1Ra, and IL-6 response for 4 c

(NB: the IL-1b stimulation tube was omitted from analysis because it confounds

See also Figure S5.
To capture amore precisemeasure of the innate response, we

also utilized purified or synthetic MAMPs known to engage the

TLR, NLR, or CLR families of microbial sensors. These pathways

have been heavily investigated over the past two decades and

efforts are underway to establish some of the selected ligands

as adjuvants for vaccine formulation. For NF-kB-induced cyto-

kines (e.g., TNF-a, IL-1b, IL-6, MIP-1a, MIP-1b, IL-8, and IL-

12p40), we found a similar pattern of expression across the

different stimuli. LPSwas unique in its induction of IL-23,whereas

pIC induced the highest levels of IL-12p70. Although our xMAP

testing did not evaluate many interferon-induced proteins, the

levels of IP-10 were consistent with the endosomal TLRs being

more robust stimulators of IRF3 than the surface receptors (Bla-

sius and Beutler, 2010). DAP was a relatively weak stimulus,

possibly because of poor membrane permeability, though we

were able to observe a consistent induction of NF-kB-dependent

chemokines or cytokines. Although they were less reliable than

other stimulation systems, we were able to detect strong signa-

tures by using CPPD and WGP, both of which showed high in-

duction of IL-1b and measureable levels of IL-18, a likely result

of inflammasome activation. Of note, the interindividual variance

for many of the induced proteins was greater than the intraindi-

vidual variance of the assay systems. The LAM signature was

notable for the highest interindividual variance in IL-10 among

the different stimuli used (range 2.7–1,100 pg/ml; CV = 158%

for LAM-induced IL-10). Our data are consistent with mRNA

and protein expression patterns that have been evaluated via

transcriptional profiling, ELISA, or Luminex on specific stimu-

lated cell types, such as human monocytes and dendritic cells

(Huang et al., 2001; Kwissa et al., 2012; Torri et al., 2010). Our

study, however, represents a systematic evaluation of pattern

recognition receptor (PRR) activation that takes into consider-

ation the complex cellular interactions occurring in whole blood

and serummatrix components, which might be closer to the nat-

ural conditions in which immune responses are provided.

One of the most interesting results of our study was the identi-

fication of 2 of 25 donors who did not release IL-1a after stimula-

tion with any of the 27 different stimuli. Despite the failure to

detect IL-1a, all remaining chemokine and cytokine signatures

were intact for these donors, including the production of IL-1b.

Two distinct but related genes, IL1A and IL1B, encode for IL-1a

and IL-1b, respectively (Dinarello, 2009). Both bind the same

surface receptor, and both are antagonized by the soluble

protein IL-1Ra. Notably, IL-1 blockade, by means of IL-1RA

or neutralizing antibodies, has become central to the clinical

management of rheumatologic diseases and hereditary systemic

autoinflammatory disorders (Dinarello et al., 2012). IL-1a is

expressed by most cells and because of the lack of a signal

peptide it is not readily secreted. Intracellular IL-1a is preformed
althy donors. Analytes are represented as picograms per milliliter (pg/ml) and

presented by a colored line, connecting the concentration of measured protein

5 donors. Black dots indicate the fold change as compared to the median value

�1.3 were included. A red asterisk highlights the identification of two donors in

onsecutive donors are shown for the Null condition and 26 whole-blood stimuli

the measurement of IL-1b).
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and bioactive; as such, its release from damaged cells is consid-

ered to be one of the first steps in the initiation of so-called sterile

inflammation. In our study, we detected measurable amounts of

IL-1a in the culture supernatant after whole-blood stimulation

with HKEC, HKSA, HKLR, BCG, HKCA, SeV, CPPD, LPS,

R848, and WPG (defined by median fold change over null stimu-

lation > 1.3). Future studies will be required in order to identify

how the geneticmakeup of the host, including commonpolymor-

phisms in the European population,may account for the failure of

the two donors to release IL-1a in the setting of multiple immune

stimulations.

In summary, the whole-blood collection stimulation systems

presented allow the definition of induced inflammatory signa-

tures for a broad range of innate and adaptive stimuli, helping

to address the urgent need for monitoring of functional immune

responses in a reliable and reproducible manner. Moreover, we

have identified preliminary boundaries for the natural variation

in the induced immune protein phenotypes, setting the basis

for a better understanding of the meaning of a healthy immune

response. These tools will support integrative and systems-level

human population-based studies (Braga-Neto and Marques,

2006) aimed at defining the genetic and/or environmental

determinants of natural or disease-induced variation in immune

responsiveness.
EXPERIMENTAL PROCEDURES

Donors

Samples were obtained as part of the Milieur Intérieur Healthy Donor Cohort.

Details are provided in Supplemental Experimental Procedures and can found

at http://www.clinicaltrials.gov (identifier NCT01699893).

Whole-Blood Stimulation

TruCulture tubes were prepared in batch with the indicated stimulus, resus-

pended in a volume of 2 ml buffered media, and maintained at �20�C until

time of use. Blood was obtained from the antecubital vein by a 60 ml syringe

containing sodium-heparin (50 IU/ml final concentration). Within 15 min of

collection, 1 ml of whole blood was distributed into each of the prewarmed

TruCulture tubes, inserted into a dry block incubator, and maintained at

37�C (±1�C) room air for 22 hr (±15 min). At the end of the incubation period,

tubes were opened and a valve was inserted in order to separate the

sedimented cells from the supernatant and to stop the stimulation reaction.

Liquid supernatants were aliquoted and immediately frozen at �80�C until

the time of use.

Multianalyte Profiling and Identification of Inflammatory Signatures

Supernatants from whole-blood stimulation systems were analyzed with

Luminex xMAP technology. Samples were measured according to CLIA

guidelines (validated by guidelines set forth by the USA Clinical and Labora-

tory Standards Institute). The 32 measured analytes were organized on three

multiplex arrays, and a single batch of reagents was used for testing all

samples. The least detectable dose (LDD) for each assay was derived by

averaging the values obtained from 200 runs with the matrix diluent and

adding 3 standard deviations to the mean. The lower limit of quantification

(LLOQ) is determined based on the standard curve for each assay and is

the lowest concentration of an analyte in a sample that can be reliably de-

tected and at which the total error meets CLIA requirements for laboratory

accuracy. For analytes tested, the LDD and LLOQ can be found in Table

S3. The lower assay limit (LAL) is the lowest value read out after application

of the standard curve and use of curve-fitting algorithms. In most instances,

the LAL is less than the LDD and the LLOQ. For data mining, individual values

below the LAL were replaced with a value that is 50% of the lowest value

measured in the data set.
448 Immunity 40, 436–450, March 20, 2014 ª2014 Elsevier Inc.
Statistical Analysis and Data Visualization

Principal component analysis (PCA), agglomerative hierarchical clustering,

and ANOVA testing were performed with Qlucore Omics Explorer, v.2.3

(Qlucore). We report ANOVA-based p values, and to correct for multiple

testing we report false discovery rate (FDR)-adjusted ANOVA p values, called

q values. Dot plot graphs and two-way correlation plots were compiled with

GraphPad Prism v.6.0. Correlation matrices and bar graphs were calculated

with R v.2.15.1 and drawn with graphical package ggplot2 v.0.9.3.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, four tables, and one data set and can be found with this article

online at http://dx.doi.org/10.1016/j.immuni.2014.03.002.
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