692 research outputs found

    Analysis and Exploitation of the Star-Point Voltage of Synchronous Machines for Sensorless Operation

    Get PDF
    In the field of sensorless drive of synchronous machines (SMs), many techniques have been proposed that can be applied successfully in most applications. Nevertheless, these techniques rely on the measurement of the phase currents to extract the rotor position information. In the particular case of low-power machines, the application of such techniques is challenging due to the limited bandwidth of the available current sensors. An alternative is offered by those techniques that exploit the star-point voltage rather than phase currents. This work aims at providing a model of the dynamic behavior of the star-point voltage and presenting a technique for extracting the rotor electrical position needed for sensorless operation of SMs. Two different circuitries for measuring the star-point voltage are also presented and then compared. The presented mathematical analysis and the measurement methods are validated both numerically and experimentally on a test machine

    Sensorless Pedalling Torque Estimation Based on Motor Load Torque Observation for Electrically Assisted Bicycles

    Get PDF
    The need for reducing the cost of and space in Electrically Assisted Bicycles (EABs) has led the research to the development of solutions able to sense the applied pedalling torque and to provide a suitable electrical assistance avoiding the installation of torque sensors. Among these approaches, this paper proposes a novel method for the estimation of the pedalling torque starting from an estimation of the motor load torque given by a Load Torque Observer (LTO) and evaluating the environmental disturbances that act on the vehicle longitudinal dynamics. Moreover, this work shows the robustness of this approach to rotor position estimation errors introduced when sensorless techniques are used to control the motor. Therefore, this method allows removing also position sensors leading to an additional cost and space reduction. After a mathematical description of the vehicle longitudinal dynamics, this work proposes a state observer capable of estimating the applied pedalling torque. The theory is validated by means of experimental results performed on a bicycle under different conditions and exploiting the Direct Flux Control (DFC) sensorless technique to obtain the rotor position information. Afterwards, the identification of the system parameters together with the tuning of the control system and of the LTO required for the validation of the proposed theory are thoroughly described. Finally, the capabilities of the state observer of estimating an applied pedalling torque and of recognizing the application of external disturbance torques to the motor is verified

    Analysis and Application of the Direct Flux Control Sensorless Technique to Low-Power PMSMs

    Get PDF
    In the field of sensorless control of permanent magnet synchronous motors (PMSMs), different techniques based on machine anisotropies have been studied and implemented successfully. Nevertheless, most proposed approaches extract the rotor position information from the measured machine currents, that, when applied to low-power machines, might require high-bandwidth current sensors. An interesting alternative is given by sensorless techniques that exploit the star-point voltage of PMSMs, such as the direct flux control technique. This work aims at analyzing the conditions of applicability of such technique by considering a more thorough description of the machine inductance matrix. After a comprehensive mathematical description of the technique and characterization of the machine anisotropy information that is extracted from the star-point voltage, simulation as well as experimental results conducted on a test machine are presented and discussed in order to validate the proposed theory

    Cancer associated fibroblasts: the architects of stroma remodelling

    Get PDF
    Fibroblasts have exceptional phenotypic plasticity and capability to secrete vast amount of soluble factors, ECM components and extracellular vesicles. While in physiological conditions this makes fibroblasts master regulators of tissue homeostasis and healing of injured tissues, in solid tumours cancer-associated fibroblasts (CAFs) co-evolve with the disease, and alter the biochemical and physical structure of the tumour microenvironment, as well as the behaviour of the surrounding stromal and cancer cells. Thus CAFs are fundamental regulators of tumour progression and influence response to therapeutic treatments. Increasing efforts are devoted to better understand the biology of CAFs to bring insights to develop complementary strategies to target this cell type in cancer. Here we highlight components of the tumour microenvironment that play key roles in cancer progression and invasion, and provide an extensive overview of past and emerging understanding of CAF biology as well as the contribution that mass spectrometry (MS)-based proteomics has made to this field

    Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells

    Get PDF
    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor and endothelial cell-specific mitogen that stimulates urokinase-type plasminogen activator (uPA) activity in vascular endothelial cells. Here, we report that VEGF increases the high affinity binding of uPA to the same cells and that this binding is prevented by a peptide corresponding to the uPA receptor (uPAR) binding growth factor-like domain of uPA. Ligand cross-linking, ligand blotting, and uPA-Sepharose affinity chromatography revealed an increase in a cell surface uPA binding protein that corresponds to the uPAR on the basis of its affinity for uPA, M(r) of 50,000-55,000, and phosphatidylinositol-specific phospholipase C sensitivity. By Scatchard analysis, VEGF increased the number of uPAR molecules by 2.8-3.5-fold and concomitantly decreased their affinity for uPA. By northern blotting uPAR mRNA was increased in a dose- and time-dependent manner in response to VEGF. Taken together, these findings demonstrate that VEGF-induced angiogenesis is accompanied by increased uPAR expression and uPA activity on the endothelial cell surface. These observations are consistent with the notion that the uPA-uPAR interaction facilitates cellular invasion

    Correlation of Vascular Endothelial Growth Factor-D Expression and VEGFR-3-Positive Vessel Density with Lymph Node Metastasis in Gastric Carcinoma

    Get PDF
    Lymph node metastasis is an important prognostic factor in gastric cancer. Vascular endothelial growth factor-D (VEGF-D) is a lymphangiogenic growth factor that activates VEGF receptor (VEGFR)-3, a receptor expressed in the lymphatic endothelium. We investigated the clinical value of VEGF-D expression and VEGFR-3 positive vessel density in gastric carcinoma with regard to lymphangiogenesis. Immunohistochemical staining was used to determine the expression of VEGF-D and VEGFR-3 in specimens from 104 cases of resected gastric cancer. VEGF-D expression was observed in 62.5% of the gastric cancers and in 9.6% of the non-neoplastic gastric tissue. The VEGFR-3-positive vessel density was significantly greater in the VEGFD positive group than the negative group. VEGF-D expression was significantly associated with lymph node metastasis, increased serum CEA levels, and the non-signet ring cell type. The VEGFR-3-positive vessel density was correlated with tumor size, lymphatic invasion, and lymph node metastasis. The VEGF-D expression and high VEGFR-3-positive vessel density were significant poor prognostic factors for relapse-free survival. These results suggest that VEGF-D and VEGFR-3-positive vessel density are potential molecular markers that predict lymphatic involvement in gastric carcinoma
    • …
    corecore