9 research outputs found

    Low N2_{2}O and variable CH4_{4} fluxes from tropical forest soils of the Congo Basin

    Get PDF
    Globally, tropical forests are assumed to be an important source of atmospheric nitrous oxide (N2_{2}O) and sink for methane (CH4_{4}). Yet, although the Congo Basin comprises the second largest tropical forest and is considered the most pristine large basin left on Earth, in situ N2_{2}O and CH4_{4} flux measurements are scarce. Here, we provide multi-year data derived from on-ground soil flux (n = 1558) and riverine dissolved gas concentration (n = 332) measurements spanning montane, swamp, and lowland forests. Each forest type core monitoring site was sampled at least for one hydrological year between 2016 - 2020 at a frequency of 7-14 days. We estimate a terrestrial CH4_{4} uptake (in kg CH4_{4}-C ha1^{-1} yr1^{-1}) for montane (−4.28) and lowland forests (−3.52) and a massive CH4_{4} release from swamp forests (non-inundated 2.68; inundated 341). All investigated forest types were a N2_{2}O source (except for inundated swamp forest) with 0.93, 1.56, 3.5, and −0.19 kg N2_{2}O-N ha1^{-1} yr1^{-1} for montane, lowland, non-inundated swamp, and inundated swamp forests, respectively

    International Geomagnetic Reference Field: the eleventh generation

    Get PDF
    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V-MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field model for epoch 2010.0, and a linear predictive secular variation model for 2010.0-2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity for epoch 2010.0 and their predicted rates of change for 2010.0-2015.0 are presented. The recent evolution of the South Atlantic Anomaly and magnetic pole positions are also examine

    International Geomagnetic Reference Field: the eleventh generation

    Get PDF
    The eleventh generation of the International Geomagnetic Reference Field (IGRF)was adopted in December 2009 by the International Association of Geomagnetism and AeronomyWorking Group V-MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field model for epoch 2010.0, and a linear predictive secular variation model for 2010.0–2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity for epoch 2010.0 and their predicted rates of change for 2010.0–2015.0 are presented. The recent evolution of the South Atlantic Anomaly and magnetic pole positions are also examined

    International Geomagnetic Reference Field: the thirteenth generation

    Get PDF
    In December 2019, the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group (V-MOD) adopted the thirteenth generation of the International Geomagnetic Reference Field (IGRF). This IGRF updates the previous generation with a definitive main field model for epoch 2015.0, a main field model for epoch 2020.0, and a predictive linear secular variation for 2020.0 to 2025.0. This letter provides the equations defining the IGRF, the spherical harmonic coefficients for this thirteenth generation model, maps of magnetic declination, inclination and total field intensity for the epoch 2020.0, and maps of their predicted rate of change for the 2020.0 to 2025.0 time period
    corecore