8 research outputs found

    Increasing species richness along elevational gradients is associated with niche packing in bat assemblages

    Get PDF
    1. The change in species richness along elevational gradients is a well-known pattern in nature. Niche theory predicts that increasing species richness in assemblages can either lead to denser packing of niche space (‘niche packing’) or an expansion into its novel regions (‘niche expansion’). Traditionally, these scenarios have been studied using functional traits but stable isotopes provide advantages such as identifying the degree of resource specialisation, or niche partitioning among functionally similar species. 2. In this study, we evaluate the relevance of niche packing versus niche expansion by investigating stable carbon and nitrogen isotopic niche width and overlap among 23 bat species from six functional groups across a 1500 m elevational gradient in the Himalaya. 3. Our results suggest that an increase in species richness in the low elevation is accompanied by small niche width with high overlap, whereas the high elevation assemblage shows large niche width with low overlap among functional group members. At the functional group level, edge-space foraging, trawling, and active gleaning bats have the highest niche width while passive gleaning bats that are only found in high elevations are isotopic specialists showing low overlap with other groups. Edge and open-space foraging bats showed idiosyncratic changes in niche width across elevations. We also find that the niches of rhinolophid bats overlap with edge-space and open-space foraging bats despite their unique functional traits. 4. These results support the idea that at low elevations high species richness is associated with niche packing while at high elevations strong niche partitioning prevails in dynamic and resource-poor environments. We conclude that although high elevation animal assemblages are often ‘functionally underdispersed’, that is show homogenous functional traits, our approach based on stable isotopes demonstrates niche partitioning among such functionally similar species

    The Iso2k Database: A global compilation of paleo-ÎŽ18O and ÎŽ2H records to aid understanding of Common Era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~ 2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (ή18O) or hydrogen (ή2H) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.6084/m9.figshare.11553162 (McKay and Konecky, 2020)

    The Iso2k database: a global compilation of paleo-ÎŽ18O and ÎŽ2H records to aid understanding of common era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~2,000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (ÎŽ18O) or hydrogen (ÎŽÂČH) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via through the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593

    Stable sulphur isotope (<i>ÎŽ</i><sup>34</sup>S) ratios in bird feathers from India indicate strong segregation between the Himalaya and Gangetic plain, and the rest of India

    No full text
    Although stable hydrogen (ÎŽ2H) and carbon (ÎŽ13C) isotopic compositions of bird feathers have been increasingly used to understand the migration of birds through assignment of individuals to established isoscapes, far less is known about the structure of feather isoscapes based on stable sulphur isotope (ÎŽ34S) assays. While ÎŽ2H isoscapes have been used to investigate the migratory origins of the Globe Skimmer (Pantala flavescens) dragonfly in India, no isotope studies have been applied to avian migration patterns in that region. Here, based on museum collections, we report the feather ÎŽ34S values of 13 avian species that included marine birds with expected 34S enriched feathers, resident birds throughout India and a single migratory species, Bar-headed Goose (Anser indicus). Feathers from the marine birds were the most enriched (20.6 ± 1.2 ‰, n = 10; range = 4.4 ‰) in 34S but terrestrial resident species also showed unexpectedly high ÎŽ34S values (11.7 ± 4.8 ‰, n = 74; range = 19.9 ‰) throughout most of India but the Himalayan region and Gangetic plain typically showed ÎŽ34S values less than 6.4 ‰. Our results show the utility of feather ÎŽ34S studies to decipher avian and other animal migration between these two regions.</p

    Globally coherent water cycle response to temperature change during the past two millennia

    Get PDF
    The response of the global water cycle to changes in global surface temperature remains an outstanding question in future climate projections and in past climate reconstructions. The stable hydrogen and oxygen isotope compositions of precipitation (ήprecip), meteoric water (ήMW) and seawater (ήSW) integrate processes from microphysical to global scales and thus are uniquely positioned to track global hydroclimate variations. Here we evaluate global hydroclimate during the past 2,000 years using a globally distributed compilation of proxies for ήprecip, ήMW and ήSW. We show that global mean surface temperature exerted a coherent influence on global ήprecip and ήMW throughout the past two millennia, driven by global ocean evaporation and condensation processes, with lower values during the Little Ice Age (1450–1850) and higher values after the onset of anthropogenic warming (~1850). The Pacific Walker Circulation is a predominant source of regional variability, particularly since 1850. Our results demonstrate rapid adjustments in global precipitation and atmospheric circulation patterns—within decades—as the planet warms and cools
    corecore