95 research outputs found

    Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling

    Get PDF
    The Hippo pathway controls cell proliferation, differentiation, and survival by regulating the YAP transcriptional coactivator in response to various stimuli, including the mechanical environment. The major YAP regulators are the LATS1/2 kinases, which phosphorylate and inhibit YAP. LATS1/2 are activated by phosphorylation on a hydrophobic motif (HM) outside the kinase domain by MST1/2 and other kinases. Phosphorylation of the HM motif then triggers autophosphorylation of the kinase in the activation loop (AL) to fully activate the kinase, a process facilitated by MOB1. The angiomotin family of proteins (AMOT, AMOTL1, and AMOTL2) bind LATS1/2 and promote its kinase activity and YAP phosphorylation through an unknown mechanism. Here, we show that angiomotins increase Hippo signaling through multiple mechanisms. We found that by binding LATS1/2, SAV1, and YAP, angiomotins function as a scaffold that connects LATS1/2 to both its activator SAV1-MST1 and its target YAP. Deletion of all three angiomotins reduced the association of LATS1 with SAV1-MST1 and decreased MST1/2-mediated LATS1/2-HM phosphorylation. Angiomotin deletion also reduced LATS1/2\u27s ability to associate with and phosphorylate YAP. In addition, we found that angiomotins have an unexpected function along with MOB1 to promote autophosphorylation of LATS1/2 on the AL motif independent of HM phosphorylation. These results indicate that angiomotins enhance Hippo signaling by stimulating LATS1/2 autophosphorylation and by connecting LATS1/2 with both its activator SAV1-MST1/2 and its substrate YAP

    Angiomotins link F-actin architecture to Hippo pathway signaling

    Get PDF
    The Hippo pathway regulates the transcriptional coactivator YAP to control cell proliferation, organ size, and stem cell maintenance. Multiple factors, such as substrate stiffness, cell density, and G protein-coupled receptor signaling, regulate YAP through their effects on the F-actin cytoskeleton, although the mechanism is not known. Here we show that angiomotin proteins (AMOT130, AMOTL1, and AMOTL2) connect F-actin architecture to YAP regulation. First, we show that angiomotins are required to relocalize YAP to the cytoplasm in response to various manipulations that perturb the actin cytoskeleton. Second, angiomotins associate with F-actin through a conserved F-actin-binding domain, and mutants defective for F-actin binding show enhanced ability to retain YAP in the cytoplasm. Third, F-actin and YAP compete for binding to AMOT130, explaining how F-actin inhibits AMOT130-mediated cytoplasmic retention of YAP. Furthermore, we find that LATS can synergize with F-actin perturbations by phosphorylating free AMOT130 to keep it from associating with F-actin. Together these results uncover a mechanism for how F-actin levels modulate YAP localization, allowing cells to make developmental and proliferative decisions based on diverse inputs that regulate actin architecture

    Evolution of the nucleus

    Get PDF
    Under a Creative Commons license.The nucleus represents a major evolutionary transition. As a consequence of separating translation from transcription many new functions arose, which likely contributed to the remarkable success of eukaryotic cells. Here we will consider what has recently emerged on the evolutionary histories of several key aspects of nuclear biology; the nuclear pore complex, the lamina, centrosomes and evidence for prokaryotic origins of relevant players.Work in our laboratories was supported by the following agencies, and which is gratefully acknowledged; MRC and Wellcome Trust (MR/K008749/1 and 090007/Z/09/Z respectively, to MCF), C2A Junta de Andalucia to DPD and DFG GR1642/4-1 to RG.Open Access funded by Wellcome Trust.Peer Reviewe

    YAP/TAZ upstream signals and downstream responses

    Get PDF

    CopB from Archaeoglobus fulgidus: a thermophilic Cu2+ transporting CPx-ATPase

    Get PDF
    In this work we present the first characterization of a Cu2+-transporting ATPase. The thermophilic bacteria Archaeoglobus fulgidus contains two genes, CopA and CopB, encoding for CPx-ATPases. CopB belongs to the subgroup IB-4 of the CPX-ATPases. These enzymes are characterized by a CPH motif in the 6th transmembrane domain and a His-rich N-terminus metal binding domain (MBD). CopB was heterologously expressed in E. coli. Membranes were prepared and used to measure activity. CopB was active at high temperature (75º C), high ionic strength and pH 5.7. The enzyme was activated by Cu2+, and in to a lesser extent by Ag+ and Cu+. CopB showed a Vmax = 5 µmol/mg/h and a high apparent affinity (K1/2 = 0.28 ± 0.09 μM) for Cu2+. Uptake of 64Cu2+ into everted vesicles was also measured in order to show that Cu2+ is not only activating the enzyme but being transported. Compared with CopB-WT, CopB-T (lacking the N-terminus MBD) did not show any difference in its activation by the different metal ions, demonstrating that the cytoplasmic MBD has no role in the metal selectivity. CopB-T also showed a 40 % decrease in the ATPase activity. CopB-WT and CopB-T presented similar levels of phosphorylation. However, CopB-T exhibited a reduced rate of dephosphorylation (slower transition from the E2P to the E2 conformation). These observations suggest a regulatory role for the cytoplasmic MBD

    Identification of SIN pathway targets reveals mechanisms of crosstalk between NDR kinase pathways

    Get PDF
    The septum initiation network (SIN) regulates multiple functions during late mitosis to ensure successful completion of cytokinesis in Schizosaccharomyces pombe. One mechanism by which the SIN promotes cytokinesis is by inhibiting a competing polarity pathway called the MOR, which is required for initiation of polarized growth following completion of cytokinesis. Mutual antagonism between the two NDR kinase pathways, SIN and MOR, is required to coordinate cytoskeletal rearrangements during the mitosis-interphase transition. To determine how the SIN regulates the MOR pathway, we developed a proteomics approach that allowed us to identify multiple substrates of the SIN effector kinase Sid2, including the MOR pathway components Nak1 kinase and an associated protein, Sog2. We show that Sid2 phosphorylation of Nak1 causes removal of Nak1 from the spindle pole bodies, which may both relieve Nak1 inhibition of the SIN and block MOR signaling by preventing interaction of Nak1 with the scaffold protein Mor2. Because the SIN and MOR are conserved in mammalian cells (Hippo and Ndr1/2 pathways, respectively), this work may provide important insight into how the activities of these essential pathways are coordinated

    Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability

    No full text
    The centrosome-nucleus attachment is a prerequisite for faithful chromosome segregation during mitosis. We addressed the function of the nuclear envelope (NE) protein Sun-1 in centrosome-nucleus connection and the maintenance of genome stability in Dictyostelium discoideum. We provide evidence that Sun-1 requires direct chromatin binding for its inner nuclear membrane targeting. Truncation of the cryptic N-terminal chromatin-binding domain of Sun-1 induces dramatic separation of the inner from the outer nuclear membrane and deformations in nuclear morphology, which are also observed using a Sun-1 RNAi construct. Thus, chromatin binding of Sun-1 defines the integrity of the nuclear architecture. In addition to its role as a NE scaffold, we find that abrogation of the chromatin binding of Sun-1 dissociates the centrosome-nucleus connection, demonstrating that Sun-1 provides an essential link between the chromatin and the centrosome. Moreover, loss of the centrosome-nucleus connection causes severe centrosome hyperamplification and defective spindle formation, which enhances aneuploidy and cell death significantly. We highlight an important new aspect for Sun-1 in coupling the centrosome and nuclear division during mitosis to ensure faithful chromosome segregatio
    • …
    corecore