43 research outputs found

    Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE

    Full text link
    We present a spectral analysis of 35 GRBs detected with the HETE-2 gamma-ray detectors (the FREGATE instrument) in the energy range 7-400 keV. The GRB sample analyzed is made of GRBs localized with the Wide Field X-ray Monitor onboard HETE-2 or with the GRB Interplanetary Network. We derive the spectral parameters of the time-integrated spectra, and present the distribution of the low-energy photon index, alpha, and of the peak energy, e_peak . We then discuss the existence and nature of the recently discovered X-Ray Flashes and their relationship with classical GRBs.Comment: 14 pages, 43 figures, accepted for publication in Astronomy and Astrophysic

    Beam test results for the FiberGLAST instrument

    Get PDF
    The FiberGLAST scintillating fiber telescope is a large-area instrument concept for NASA\u27s GLAST program. The detector is designed for high-energy gamma-ray astronomy, and uses plastic scintillating fibers to combine a photon pair tracking telescope and a calorimeter into a single instrument. A small prototype detector has been tested with high energy photons at the Thomas Jefferson National Accelerator Facility. We report on the result of this beam test, including scintillating fiber performance, photon track reconstruction, angular resolution, and detector efficiency

    Estimation of GRB detection by FiberGLAST

    Get PDF
    FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts

    Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST

    Get PDF
    A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented

    The ac magnetic response of mesoscopic type II superconductors

    Full text link
    The response of mesoscopic superconductors to an ac magnetic field is numerically investigated on the basis of the time-dependent Ginzburg-Landau equations (TDGL). We study the dependence with frequency ω\omega and dc magnetic field HdcH_{dc} of the linear ac susceptibility χ(Hdc,ω)\chi(H_{dc}, \omega) in square samples with dimensions of the order of the London penetration depth. At Hdc=0H_{dc}=0 the behavior of χ\chi as a function of ω\omega agrees very well with the two fluid model, and the imaginary part of the ac susceptibility, χ"(ω)\chi"(\omega), shows a dissipative a maximum at the frequency Îœo=c2/(4πσλ2)\nu_o=c^2/(4\pi \sigma\lambda^2). In the presence of a magnetic field a second dissipation maximum appears at a frequency ωpâ‰ȘÎœ0\omega_p\ll\nu_0. The most interesting behavior of mesoscopic superconductors can be observed in the χ(Hdc)\chi(H_{dc}) curves obtained at a fixed frequency. At a fixed number of vortices, χ"(Hdc)\chi"(H_{dc}) continuously increases with increasing HdcH_{dc}. We observe that the dissipation reaches a maximum for magnetic fields right below the vortex penetration fields. Then, after each vortex penetration event, there is a sudden suppression of the ac losses, showing discontinuities in χ"(Hdc)\chi"(H_{dc}) at several values of HdcH_{dc}. We show that these discontinuities are typical of the mesoscopic scale and disappear in macroscopic samples, which have a continuos behavior of χ(Hdc)\chi(H_{dc}). We argue that these discontinuities in χ(Hdc)\chi(H_{dc}) are due to the effect of {\it nascent vortices} which cause a large variation of the amplitude of the order parameter near the surface before the entrance of vortices.Comment: 12 pages, 9 figures, RevTex

    Multi-wavelength observations of the energetic GRB 080810: detailed mapping of the broadband spectral evolution

    Get PDF
    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by ROTSE and a host of other telescopes and was detected in the radio by the VLA. The redshift of z= 3.355 +/- 0.005 was determined by Keck/HIRES and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-10^3 keV, systematically softens over time, with E_peak moving from ~600 keV at the start to ~40 keV around 100 s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasithermal model shifting from ~60 keV to ~3 keV over the same time interval. The first optical detection was made at 38 s, but the smooth, featureless profile of the full optical coverage implies that this originated from the afterglow component, not the pulsed/flaring prompt emission. Broadband optical and X-ray coverage of the afterglow at the start of the final X-ray decay (~8 ks) reveals a spectral break between the optical and X-ray bands in the range 10^15 - 2x10^16 Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by ~3x10^5 s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3x10^53 erg and 1.6x10^52 erg for the afterglow; there is no evidence for a jet break in the afterglow up to six days following the burst.Comment: 15 pages, 9 figures, 4 in colour. Accepted for publication in MNRA

    Learning from learning logs: A case study of metacognition in the primary school classroom

    Get PDF
    Structured thinking activities (STAs) are pedagogical tools used to support metacognition in classrooms. Despite their popularity, little is known about how pupils use STAs as platforms to think about and manage their own thinking (i.e. as metacognitive tools). This case study investigated pupils’ use of STAs in relation to metacognition throughout a school year. We focus on two 8‐year‐old pupils, Amy and Laura, as they completed two specific STAs through weekly class meets and termly achievement logs. Data were triangulated through participant observation, qualitative interviews and analysis of written texts. We found clear differences between Laura's and Amy's written STAs, however observation and interviews revealed that engagement with STAs was similar beyond that suggested by the written evidence alone. Whereas Amy used easily spelt ‘stock’ responses, Laura used ‘bare minimum’ responses to meet teacher expectations. As such, neither Amy nor Laura used STAs as metacognitive tools, however in negotiating STAs, both exhibited strategic regulatory skills indicative of metacognition. Whilst our findings highlight that pupils may still be developing explicit metacognitive knowledge necessary to take full advantage of STAs, we highlight the clear value of persistent approaches to using STAs as tools to support developing metacognition, particularly in association with teacher–pupil interactions

    Designing networks in cooperation with ACO

    No full text
    In this paper we present a cooperative game for a network design. The game model adopts for the cooperating players the profit maximizing requirement. Since the players may use different paths, there is the possibility to cooperate and design the optimal network satisfying the requests of all the players and minimizing the cost. The solution of the game is determined by the core concept, well known in cooperative game literature. By means of several examples, both analytical and numerical solutions are proposed. Concerning the computational procedure, in this work an algorithmic approach based on ant colony model is employed. Finally, an application to the airline network design is discussed, providing a numerical example for intercontinental air traffic routes
    corecore