127 research outputs found
Numerical simulations with the P-Hydroslag model to predict phosphorus removal by steel slag filters
The first version of the P-Hydroslag model for numerical simulations of steel slag filters is presented. This model main original feature is the implementation of slag exhaustion behavior, crystal growth and crystal size effect on crystal solubility, and crystal accumulation effect on slag dissolution. The model includes four mineral phases: calcite, monetite, homogeneous hydroxyapatite (constant size and solubility) and heterogeneous hydroxyapatite (increasing size and decreasing solubility). In the proposed model, slag behavior is represented by CaO dissolution kinetic rate and exhaustion equations; while slag dissolution is limited by a diffusion rate through a crystal layer. An experimental test for measurement of exhaustion equations is provided. The model was calibrated with an experimental program made of three phases. Firstly, batch tests with 300 g slag sample in synthetic solutions were conducted for the determination of exhaustion equation. Secondly, a slag filter column test fed with synthetic solution was run for 623 days, divided into 9 cells and sampled at the end of the experiment. Finally, the column was dismantled, sampled and analyzed with XRD, TEM and SEM. Experimental column curves for pH, oPO4, Ca and inorganic carbon were well predicted by the model. Crystal sizes measured by XRD and TEM validated the hypothesis for homogeneous precipitation while SEM observations validated the thin crystal layer hypothesis. A preliminary validation of the model resulted in successful predictions of a steel slag filter longevity fed with real wastewater
Phosphorus removal by steel slag filters: modeling dissolution and precipitation kinetics to predict longevity
This article presents an original numerical model suitable for longevity prediction of alkaline steel slag filters used for phosphorus removal. The model includes kinetic rates for slag dissolution, hydroxyapatite and monetite precipitation and for the transformation of monetite into hydroxyapatite. The model includes equations for slag exhaustion. Short-term batch tests using slag and continuous pH monitoring were conducted. The model parameters were calibrated on these batch tests and experimental results were correctly reproduced. The model was then transposed to long-term continuous flow simulations using the software PHREEQC. Column simulations were run to test the effect of influent P concentration, influent inorganic C concentration and void hydraulic retention time on filter longevity and P retention capacity. High influent concentration of P and inorganic C, and low hydraulic retention time of voids reduced the filter longevity. The model provided realistic P breakthrough at the column outlet. Results were comparable to previous column experiments with the same slag regarding longevity and P retention capacity. A filter design methodology based on a simple batch test and numerical simulations is proposed
Impact of media coating on simultaneous manganese removal and remineralization of soft water via calcite contactor
The aim of this study was to investigate the negative impact of a newly-formed manganese (Mn)-layer on calcite dissolution in the long-term operation of a calcite contactor. Simultaneous removal of Mn and remineralization of soft water in an up-flow calcite contactor was conducted and led to a progressive loading of Mn into the calcite matrix. The calcite contactor demonstrated high Mn removal; however, the hardness release decreased from 32 to 20 mg CaCO₃ L-1 after 600 h of operation on a high Mn concentration (5 mg L-1) feed. For an elevated Mn concentration (i.e. 5 mg Mn L-1) in the feed water, the coated layer was mainly composed of Mn which inhibits the mass transfer from the calcite core to the liquid phase. The superficial layer was identified as 5.2% Mn oxides (MnOx) by X-ray photoelectron spectroscopy (XPS). Therefore, it is postulated that Mn removal starts with an ion exchange sorption reaction between soluble Mn2+ from aqueous phase and Ca2+ from the CaCO₃ matrix which is followed by a slow recrystallization of MnCO₃ into MnO₂. On the other hand, when the Mn content in the feed water was lower (i.e. 0.5 mg Mn L-1), a considerably lower amount of MnOx was detected on the coated media. For all the examined conditions, the formation of this coating improved Mn removal due to the autocatalytic nature of the adsorption/oxidation of dissolved manganese by MnOx. A mechanistic model based on calcite dissolution and the progressive formation of a MnO₂ layer was implemented in PHREEQC software to predict the reduction in hardness release expected in long-term operation. The model was calibrated with experimental data and resulted in realistic breakthrough curves. In order to accurately predict the pH of the effluent stream, a slow-rate recrystallization of MnCO₃ into MnO₂ was implemented (compared to the fast precipitation of MnO₂ or the absence of MnO₂ formation)
Reifying Concurrency for Executable Metamodeling
International audienceCurrent metamodeling techniques can be used to specify the syntax and semantics of domain specific modeling languages (DSMLs). However, there is currently very little support for explicitly specifying concurrency semantics using metamodels. Often, such semantics are provided through implicit concurrency models embedded in the underlying execution environment supported by the language workbench used to implement the DSMLs. The lack of an explicit concurrency model has several drawbacks: it not only prevents from developing a complete understanding of the behavioral semantics, it also prevents development of effective concurrency-aware analysis techniques, and effective techniques for producing semantic variants in the cases where the semantic base has variation points. This work reifies concurrency as a metamodeling facility, leveraging formalization work from the concurrency theory and models of computation (MoC) community. The essential contribution of this paper is a proposed language workbench for binding domain-specific concepts and models of computation through an explicit event structure at the metamodel level. We illustrate these novel metamodeling facilities for designing two variants of a concurrent and timed final state machine, and provide other experiments to validate the scope of our approach
Impact of Cleaning on Membrane Performance during Surface Water Treatment: A Hybrid Process with Biological Ion Exchange and Gravity-Driven Membranes
ABSTRACT: In this study, the hybrid biological ion exchange (BIEX) resin and gravity-driven membrane (GDM) process was employed for the treatment of coloured and turbid river water. The primary objective was to investigate the impact of both physical and chemical cleaning methods on ceramic and polymeric membranes in terms of their stabilised flux, flux recovery after physical/chemical cleaning, and permeate quality. To address these objectives, two types of MF and UF membranes were utilised (M1 = polymeric MF, M2 = polymeric UF, M3 = ceramic UF, and M4 = lab-made ceramic MF). Throughout the extended operation, the resin functioned initially in the primary ion exchange (IEX) region (NOM displacement with pre-charged chloride) and progressed to a secondary IEX stage (NOM displacement with bicarbonate and sulphate), while membrane flux remained stable. Subsequently, physical cleaning involved air/water backwash with two different flows and pressures, and chemical cleaning utilised NaOH at concentrations of 20 and 40 mM, as well as NaOCl at concentrations of 250 and 500 mg Cl2/L. These processes were carried out to assess flux recovery and identify fouling reversibility. The results indicate an endpoint of 1728 bed volumes (BVs) for the primary IEX region, while the secondary IEX continued up to 6528 BV. At the end of the operation, DOC and UVA254 removal in the effluent of the BIEX columns were 68% and 81%, respectively, compared to influent water. This was followed by 30% and 57% DOC and UVA254 removal using M4 (ceramic MF). The stabilised flux remained approximately 3.8–5.2 LMH both before and after the cleaning process, suggesting that membrane materials do not play a pivotal role. The mean stabilised flux of polymeric membranes increased after cleaning, whereas that of the ceramics decreased. Enhanced air–water backwash flow and pressure resulted in an increased removal of hydraulic reversible fouling, which was identified as the dominant fouling type. Ceramic membranes exhibited a higher removal of reversible hydraulic fouling than polymeric membranes. Chemical cleaning had a low impact on flux recovery; therefore, we recommend solely employing physical cleaning
First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector
The EDELWEISS collaboration has performed a direct search for WIMP dark
matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a
low-background environment in the Laboratoire Souterrain de Modane. No nuclear
recoils are observed in the fiducial volume in the 30-200 keV energy range
during an effective exposure of 4.53 kg.days. Limits for the cross-section for
the spin-independent interaction of WIMPs and nucleons are set in the framework
of the Minimal Supersymmetric Standard Model (MSSM). The central value of the
signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
Dark Matter Search in the Edelweiss Experiment
Preliminary results obtained with 320g bolometers with simultaneous
ionization and heat measurements are described. After a few weeks of data
taking, data accumulated with one of these detectors are beginning to exclude
the upper part of the DAMA region. Prospects for the present run and the second
stage of the experiment, EDELWEISS-II, using an innovative reversed cryostat
allowing data taking with 100 detectors, are briefly described.Comment: IDM 2000, 3rd International Workshop on the Identification of Dark
Matter, York (GB), 18-22/09/2000, v2.0 minor modification
Event categories in the EDELWEISS WIMP search experiment
Four categories of events have been identified in the EDELWEISS-I dark matter
experiment using germanium cryogenic detectors measuring simultaneously charge
and heat signals. These categories of events are interpreted as electron and
nuclear interactions occurring in the volume of the detector, and electron and
nuclear interactions occurring close to the surface of the detectors(10-20 mu-m
of the surface). We discuss the hypothesis that low energy surface nuclear
recoils,which seem to have been unnoticed by previous WIMP searches, may
provide an interpretation of the anomalous events recorded by the UKDMC and
Saclay NaI experiments. The present analysis points to the necessity of taking
into account surface nuclear and electron recoil interactions for a reliable
estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.
Improved Exclusion Limits from the EDELWEISS WIMP Search
The EDELWEISS experiment has improved its sensitivity for the direct search
for WIMP dark matter. In the recoil energy range relevant for WIMP masses below
10 TeV/c2, no nuclear recoils were observed in the fiducial volume of a
heat-and-ionization cryogenic Ge detector operated in the low-background
environment of the Laboratoire Souterrain de Modane in the Frejus Tunnel,
during an effective exposure of 7.4 kg.days. This result is combined with the
previous EDELWEISS data to derive a limit on the cross-section for
spin-independent interaction of WIMPs and nucleons as a function of WIMP mass,
using standard nuclear physics and astrophysical assumptions. This limit
excludes at more than 99.8%CL a WIMP candidate with a mass of 44 GeV/c2 and a
cross-section of 5.4 x 10-6 pb, as reported by the DAMA collaboration. A first
sample of supersymmetric models are also excluded at 90%CL.Comment: 14 pages, Latex, 5 figures. Submitted to Phys. Lett.
- …