
HAL Id: hal-00850770
https://hal.inria.fr/hal-00850770v2

Submitted on 30 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reifying Concurrency for Executable Metamodeling
Benoit Combemale, Julien Deantoni, Matias Ezequiel Vara Larsen, Frédéric

Mallet, Olivier Barais, Benoit Baudry, Robert France

To cite this version:
Benoit Combemale, Julien Deantoni, Matias Ezequiel Vara Larsen, Frédéric Mallet, Olivier Barais,
et al.. Reifying Concurrency for Executable Metamodeling. SLE - 6th International Conference on
Software Language Engineering, Oct 2013, Indianapolis, IN, United States. pp.365-384, �10.1007/978-
3-319-02654-1_20�. �hal-00850770v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49759965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00850770v2
https://hal.archives-ouvertes.fr

Reifying Concurrency for Executable Metamodeling ?

Benoit Combemale1, Julien De Antoni2, Matias Vara Larsen2, Frédéric Mallet2,
Olivier Barais1, Benoit Baudry1, Robert B. France3

1 University of Rennes 1, IRISA, Inria
2 Univ. Nice Sophia Antipolis, CNRS, I3S, Inria

3 Colorado State University

Abstract. Current metamodeling techniques can be used to specify the syntax
and semantics of domain specific modeling languages (DSMLs). Still, there is
little support for explicitly specifying concurrency semantics of DSMLs. Often,
such semantics are provided by the implicit concurrency model of the execu-
tion environment supported by the language workbench used to implement the
DSMLs. The lack of an explicit concurrency model has several drawbacks: it
prevents from developing a complete understanding of the DSML’s behavioral se-
mantics, as well as effective concurrency-aware analysis techniques, and explicit
models of semantic variants. This work reifies concurrency as a metamodeling
facility, leveraging formalization work from the concurrency theory and models
of computation (MoC) community. The essential contribution of this paper is a
language workbench for binding domain-specific concepts and models of com-
putation through an explicit event structure at the metamodel level. We present a
case study that serves to demonstrate the utility of the novel metamodeling facil-
ities and clarify the scope of the approach.

1 Introduction

In a context where software-intensive systems must handle an increasing number of
issues in diverse domains, for example, issues related to providing functional features
and qualitative guarantees, and to supporting heterogeneous hardware platforms, the
use of domain-specific modeling languages (DSMLs) can result in increased produc-
tivity while providing effective support for separating concerns. DSMLs can make it
easier for stakeholders from different domains (e.g., experts in fault tolerance, security,
communication) to participate in the design of a system, by providing linguistic con-
cepts tailored to their specific needs. However, for a DSML to be an effective system
design tool, it must be defined as precisely as possible and supported by sound analysis
tools [1].

The specification, design and tooling of DSMLs leverage the rich state of the art
in language theory. Several metamodeling environments support the specification of
the syntax and the (static and dynamic) semantics of a DSML. These two elements

? This work is partially supported by the ANR INS Project GEMOC (ANR-12-INSE-0011), and
the CNRS PICS Project MBSAR.

of a DSML specify the domain-specific concepts, as well as the meanings of domain-
specific actions that manipulate these concepts. Examples of metamodeling environ-
ments include Microsoft’s DSL tools 4, Eclipse Modeling Framework (EMF) 5, Generic
Modeling Environment (GME) 6, and MetaEdit+ 7. A significant limitation of current
metamodeling environments is the lack of support for explicitly modeling concurrency
semantics. Concurrency semantics is currently defined implicitly in DSMLs that sup-
port concurrent execution in their models. It is typically embedded in the underlying
execution environment supported by the language workbench used to implement the
DSMLs (e.g., if the language runs on top of a Java Virtual Machine, the semantics of
Java threads defines concurrent behavior).

The lack of an explicit concurrency model has several drawbacks. It not only hin-
ders a comprehensive understanding of the behavioral semantics, it also prevents de-
veloping effective concurrency-aware analysis techniques. For instance, knowing that
a data-flow model (e.g., an activity diagram) follows Kahn process networks semantics
ensures de-facto properties like latency-insensitive functional determinism but imposes
communications through unbounded FIFOs. Restricting the data-flow model to the Syn-
chronous Data Flows semantics allows the computation of finite bounds on the commu-
nication buffer sizes. Furthermore, having an implicit concurrency model also prevents
the distinction of semantic variants in a model. For example, the fUML specification
identifies several semantic variation points. As stated in the fUML specification, some
semantic areas "are not explicitly constrained by the execution model: The semantics
of time, the semantics of concurrency, and the semantics of inter-object communica-
tions mechanism" [2]. The lack of an explicit model of concurrency, including time and
communication, prevents one from understanding the impact of these variation points
on the execution of a conforming model.

In previous work, we developed an approach that bridges the gap between mod-
els of computation and DSMLs [3]. In this paper we use that work as the base for
reifying concurrency as a metamodeling facility. We leverage formalization work on
concurrency and time from concurrency theory, specifically, theoretical work on tagged
structures [4] and on heterogeneous composition of models of computation [5,6]. The
primary contribution of this paper is an approach supported by a language workbench
for binding domain specific concepts and models of computation through an explicit
event structure at the metamodel level. We illustrate these novel metamodeling facili-
ties by designing a DSML specifying concurrent and timed finite state machines. We
highlight the benefits and the flexibility of the approach by making a semantic varia-
tion on the concurrency specification of the DSML. We also provide pointers to other
examples to show that our approach applies to different MoCs and DSMLs.

The paper is organized as follows. Section 2 uses background on language and con-
currency theories to identify the key ingredients of a concurrency-aware executable
DSML, and to reify them as the association of four language units. Section 3 de-
scribes the language workbench built to implement the proposal, and the associated

4 http://www.microsoft.com/en-us/download/details.aspx?id=2379
5 http://www.eclipse.org/modeling/emf/
6 http://www.isis.vanderbilt.edu/Projects/gme/
7 http://www.metacase.com/mep/

environment for concurrent model execution. Section 4 demonstrates and discusses the
DSML implementation and execution environment obtained thanks to our language
workbench. The approach is illustrated throughout the paper with the design, imple-
mentation and use of timed finite state machines. A comparison to related work and a
conclusion follow.

2 Ingredients of a Concurrency-Aware Executable DSML

2.1 Background Knowledge

Current metamodeling environments support defining a modeling language through the
specification of the concrete and the abstract syntaxes as well as the mapping from the
syntactic domain to the semantic domain. Over the last 50 years, the language theory
community has studied the mapping between the syntactic domain and the semantic
domain extensively. This has led to three primary ways of defining semantics: opera-
tional semantics, where a virtual machine uses guard(s) on the execution state to drive
the evolution of the models expressed in the language [7,8,9,10]; axiomatic semantics,
where predicates on the execution state allow reasoning about the models expressed in
the language and its correct evolution [11,12,13]; and translational semantics [14] that
defines an exogenous transformation from the syntactic domain to an existing language
(either an existing computer language or a mathematical denotation, i.e., a denotational
semantics [15]). A drawback of such approaches is that none of them supports the spec-
ification of concurrency in a manner that would allow systematic reasoning (chapter
14 of [13]). Even if these approaches could support the definition of concurrency, the
concurrency model would be scattered through the semantic specification, making it
difficult to understand and analyze the properties related to concurrency (e.g., deadlock
freeness, determinism).

In most language implementations, the concurrency semantics is implicitly embed-
ded in the underlying execution environment used to execute the conforming models.
For instance, some executable models supporting concurrent execution rely on the Java
concurrent model. On one hand, the concurrency of the model depends on the Java
concurrency and on the other hand it does not guarantee similar execution/analysis on
platforms with different parallelism possibilities (e.g., single core vs. many cores, pro-
cessor arrays).

Work on formal and explicit models of concurrency has been the focus of some re-
search programs since the fifties. Early work in this area resulted in three well-known
contemporary approaches: CCS [16], CSP [17] and Petri Nets [18]. Unlike the ap-
proaches from language theory, these solutions focus on concurrency, synchronizations
and the, possibly timed, causalities between actions. In these approaches, the focus is
on concurrency and, thus, the actions are opaque and abstract away details on data
manipulations and sequential control aspects of the system. Such models have proven
useful for reasoning about concurrent behavior, but they are not tailored to support the
description of a domain-specific modeling language dedicated to a domain expert. Af-
ter many years, work on models of concurrency has consolidated, from an analytical
point of view, into two different approaches, namely, event structures [19] and tagged
structures [4]. In these approaches the non-relevant parts of a model are abstracted away

Model of
Computation

Domain-Specific
Actions

Abstract
Syntax

Domain-Specific
Events

0..*

DSAMoC

DSE

Concept0..*

aModelConcurrency
Model

Concepts
(from Las)

Execution
Function
(from Ldsa)

Las

Event
(from Lmoc)

Ldsa

Ldse

Lmoc

Event
0..*

* *

Constraint
0..*

0..*

Legend

<<dependsOn>>

<<conformsTo>> (executable)
Model

(executable)
Modeling

Language

Metamodeling
Languages

Property

type
1Execution

State

0..*
Execution
Function

0..*

0..*

Fig. 1. Modular Design of a Concurrency-Aware Executable Modeling Language

into events (also named signal) and the focus is on how such events are related to each
other through causality, timed or synchronization relationships. Both event structures
and tagged structures have been used to formally specify or compare concurrency mod-
els underlying system models expressed in modeling languages. These concurrency
models and can be viewed as the concurrent specification of a specific system model.
However, such approaches are not related to the computational part of a model and have
not been used to specify the concurrency semantics of a language.

2.2 Language Units Identification

Taking a step back from these seminal approaches, we explicitly identify the com-
mon language units that constitute the design and implementation of an executable
concurrency-aware modeling language (see middle level of Fig. 1). Each language unit
is independent of the way it is implemented, and directly benefits from language and
concurrency theories described above.

Language Unit #1 The first language unit is the description of the language abstract
syntax (see Fig. 1). Older approaches build the semantics of the language on top of the
concrete syntax but the benefits of using the abstract syntax as a foundation for language
reasoning (first introduced in [20]) have been well understood since the 1960s. In the
MDE community, the abstract syntax is a first class part of a language definition. The
abstract syntax specifies the syntactic domain and is used to anchor the semantics. It is

however important to avoid blurring the syntactic domain with language elements that
represent the execution state of the model.

Definition 1 The Abstract Syntax (AS) specifies the concepts of the language and their
relationships. An instance of the AS is a model.

Consequently, a meta-language for modeling AS (Las in Fig. 1) must provide fa-
cilities to define the language concepts (Concept) and the relationships between them
(Property).

Language Unit #2 The second language unit, called Domain Specific Actions (see
Fig. 1), adds new properties that represent the execution state of a model and a set of
execution functions that operate on these properties during the execution of a model.

The execution state can be represented, for example, by the current state in a Finite
State Machine (FSM). It can also be specified independently of the abstract syntax,
as in, for example, the incidence matrix that encodes the state of a Petri net. Such
information is needed to specify the state of a model during its execution but is not
needed to specify the model’s static structure. It is consequently part of the semantic
domain.

The DSA is also composed of execution functions that specify how the execution
state sequentially evolves during the model execution. For instance, when a transition
is fired in a FSM, the current state is updated. This is one of the roles of the execution
functions. They also specify how the concepts of a language behave. For instance if the
language contains a Plus concept, then an execution function must specify how the Plus
instances actually behave during the model execution.

Definition 2 The Domain Specific Actions (DSA) represent both the execution state
and the execution functions of a DSML. An instance of the DSA represent the state of a
specific model during the execution and the functions to manipulate such a state.

No hypothesis is made on how to specify the DSA (Ldsa in Fig. 1). However, the
specification of the DSA depend on the AS since it describes a part of its semantic do-
main. The execution state would be defined with structural properties representing the
semantic domain, in the same way Las supports the definition of the syntactic domain.
The execution functions can be specified in very concrete terms (e.g., operational se-
mantics that uses an action language to specify rewriting rules), or in more abstract
terms (e.g., denotational semantics that provides functions specifying the execution
functions). The latter approach only denotes mathematical properties about the result,
and does not specify any details on how to implement the resulting functions. This is
even more abstract in an axiomatic semantics, where pre/post conditions on the execu-
tion state of the system are specified and all the functions that respect such conditions
are considered as correct execution functions.

Note that the global ordering of the execution functions is not specified in the DSA
since it can be concurrent (and timed). This is the role of the third language unit.

Language Unit #3 Concurrency theory has proposed many approaches, but roughly
speaking a concurrency model is a way to specify how different events are causally and
temporally related during an execution (in our case, the execution of a model conform-
ing to a DSML). These ideas have been used in the notion of Model of Computation
(MOC) [6,21,5]. All definitions of MOCs share the fact that a MOC acts as a director
for some pieces of code. The MOC is then acting as an explicit concurrency pattern,
which provides MOC-dependent analysis properties. The third language unit is then
called Model of Computation (see Fig. 1) and explicitly specifies the concurrency.

Definition 3 The Model of Computation (MOC) represents the concurrency aspects in
a language, including the synchronizations and the, possibly timed, causality relation-
ships between the execution functions. An instance of a MOC is defined for a specific
model, conforming to the DSML. It is the part of the concurrency model that specifies
the possible partial orderings between the events instantiated with regards to the model.

A meta-language for modeling MOC (Lmoc in Fig. 1) would allow the definition
of events and the specification of causal relationships (and synchronizations) such as
scheduling, temporal constraints, and communications. The events can be discrete (i.e., a
discrete event is a possibly infinite sequence of occurrences), or dense (i.e., a dense
event is an infinite set of occurrences and there are an infinity of occurrences between
any two event occurrences in the set). Lmoc must be independent of a specific AS or
DSA.

2.3 Reifying Language Units Coordination

In our approach, all language units previously presented are specified separately (see
middle level of Fig. 1). This separation benefits modularity, reuse and the identification
of the concurrency related analyses supported by the language. The modeling units
must then be consistently coordinate to provide an executable modeling language with
reified concurrency. This coordination has to keep the language units separated while
providing a natural articulation between them.

The AS and the DSA are kept separated to support several implementations of the
DSA for a single AS (to deal with semantic variation points, or with semantics for dif-
ferent purposes, e.g., interpreter or compiler). There exists a mapping between the DSA
and the AS, however the DSA is dedicated to a specific AS (see dependency between AS
and DSA in Fig. 1), and both AS and DSA are dedicated to the DSML under design. Con-
sequently, we did not reify this mapping. The mapping is more conveniently described
directly in the DSA.

The definition of the DSML behavioral semantics then consists in specifying the
coordination of a given MOC with the DSA. This coordination must keep the MOC and
DSA independent to enable the (re)use of a MOC on different AS/DSA or changing the
MOCs on a single AS/DSA. Hence, the coordination specification can be put neither
directly in the MOC nor in the DSA. For this reason, we reify the binding as a proper
language unit that bridges the gap between the MOC and the DSA. This is done through
the notion of Domain Specific Event, a novel metamodeling facility that we propose to
reify.

Language Unit #4 The Domain Specific Events (DSE, see Fig. 1) specify the coordina-
tion between the events from the MOC and the execution function calls from the DSA.
The DSE depend on both the MOC and the DSA. This coordination contains four parts:

DSE→ DSA The DSE specify events that are associated with one or more execution
functions. When such an event occurs, it results in the call of the associated execu-
tion functions. The meta language for modeling DSE (Ldse on Fig. 1) has to make
some choices about how much associated functions can be associated with an event
(e.g., single one, any) and if several functions are associated with a single event, it
must specify how these calls must be done (e.g., in sequence, in parallel).

MOC→ DSE The MOC events can be specified at a abstraction level different than the
execution functions from the DSA. For this reason, the DSE specify how the de-
fined events are obtained from the ones constrained by the MOC. This specification
can be, for example, the filtering of occurrences from an event or the detection of
an occurrence pattern from various events. It can also be the observation of some
dense events from the MOC. In this case the DSE are used to specify the relevant
observations on the dense event from the MOC and, in such a way, they specify the
events that can be observed by looking at the execution of the conforming models.
Such an adaptation between the low level events from the MOC and the ones in the
DSE can be arbitrarily complex (ranging from a simple mapping to a complex event
processing). However, when Ldse allows adaptations more complex than a simple
mapping, one must ensure that the adaptation is not breaking any concurrency-
related assumptions from the MOC.

DSA→ DSE The MOC and the DSE represent the specification, at the language level of
the concurrency model (dedicated to a specific model conforming to the DSML).
This concurrency model specifies the acceptable partial orderings of both the events
constrained by the MOC and the ones from the DSE. During a specific execution, the
call to some execution functions can restrict such partial orderings. For instance, if
the DSML specifies a conditional concept (e.g., if-then-else), a MOC usually spec-
ifies that going through the then branch or through the else branch depends on the
evaluation of the condition (i.e.,the condition evaluation causes either the then or
the else branch, exclusively). Both paths are specified in the concurrency model as
acceptable but the actual path taken during an execution depends on the result of the
call to an execution function. The specification of the feedback from the execution
function calls to the execution engine of the concurrency model must be specified
in the DSE.

MOC← DSE→ AS Finally , the DSE must specify how the MOC is applied on a spe-
cific model that conforms to the DSML (i.e., how to create the concurrency model
according to the MOC constraints and the AS concepts). Depending on the language
used for the MOC modeling, this specification can be of a different nature, how-
ever it requires the capacity to query the AS to retrieve the parameters needed for
the creation of the concurrency model. For instance, in a FSM the DSE can specify
that a specific constraint must be instantiated for all the Transition instances in the
model. Also, it can retrieve the actual parameter of the constraint by querying the
AS. Once again, depending on the possibility offered by Ldse, one must ensure the

preservation of the MOC assumptions (e.g., by using proven compilers or a language
supporting clear and simple composition of constraints from the MOC).

Definition 4 The Domain Specific Events (DSE) represent a coordination between the
MOC and the DSA to establish the concurrency-aware semantic domain. It is composed
of a set of domain specific events, a mapping between these events and the execution
functions from the DSA, a possibly complex mapping between the events constrained by
the MOC and the domain specific events; the specification of the impact of the execution
function results in the execution of the concurrency model and finally the specification
of the MOC application on a specific model that conforms to the DSML.

As highlighted by the previous description, the coordination between the MOC and
the DSA (i.e.,the DSE) is a key point to enable concurrency-aware semantic domain.
However, this coordination is often implicit or hard coded. We believe that its reifi-
cation enables effective use of a language that includes concurrency and computa-
tional aspects. In this section, we have identified the key ingredients for designing a
concurrency-aware executable DSML that leads to the architectural pattern proposed
in Figure 1. Consequently, we consider in this paper the following definition for a
concurrency-aware executable DSML:

Definition 5 A concurrency-aware executable DSML is a domain-specific modeling
language whose conforming models are executable according to an explicit concur-
rency model. Its definition includes at least the abstract syntax and the behavioral se-
mantics (including the DSA, the MOC and the DSE to coordinate them). In the context
of this paper, a concurrency-aware executable DSML (xDSML) is defined as a tuple
〈AS,DSA,MOC,DSE〉.

3 A Language Workbench to Design and Implement
Concurrency-Aware Executable DSMLs

The reification of concurrency for executable metamodeling has been presented in its
general form and several implementations of it can be realized. In this section we
present the actual implementation of our language workbench that was used to vali-
date the proposition. We have tried to take the most adequate language/technology for
each language unit so that the model expressed in the resulting language can actually
be executed. Our implementation solution is illustrated by the definition of a concur-
rent Timed Finite State Machine (TFSM) language; a language where different state
machines augmented with timed transitions can be concurrently executed. Here timed
transitions possibly refer to different (independent) clocks.

This section is organized according to the implementation choices presented in Fig-
ure 3. It starts with the description of the AS, then the DSA, followed by the MOC and to
finish, the DSE reification is specified.

3.1 Abstract Syntax Design

In model-driven engineering, the abstract syntax is usually expressed in an object-
oriented manner. For example the de facto standard meta-language EMOF (Essential

Fig. 2. Abstract Syntax of TFSM (using Ecore)

Meta Object Facility) [22] specified by the Object Management Group (OMG) can be
used. EMOF provides the following language constructs for specifying an abstract syn-
tax: package, class, property, multiple inheritance (specialization) and different kinds
of associations among classes. The semantics of these core object-oriented constructs
is close to a standard object model (e.g., Java, C#, Eiffel).

In practice, we have chosen Ecore to design abstract syntax, a meta-language part of
the Eclipse Modeling Framework (EMF) [23] and aligned with EMOF. This choice is
motivated by the wide acceptance of Ecore and its correspondence to the MOF standard.
Additionally, EMF is well tooled and many other tools are based on it (e.g., XText,
OCL, GMF, Obeo Designer), so that a language developed in our workbench can benefit
from such tools. Note that any meta-language aligned with EMOF can be used in our
approach.

Briefly, the AS of TFSM starts with a System composed of a set of T FSMs, a set
of global FSMEvents and a set of global FSMClocks (see Fig. 2). Each TFSM is
composed of States among which an initial state is identified. Each state can be the
source of outgoing guarded Transitions. A guard can be specified by the reception of
a FSMEvent (EventGuard), by a duration relative to the entry time in the incoming
state of the transition (TemporalGuard) or by a boolean condition (BooleanGuard).
The duration of a temporal guard is measured on an explicit reference clock. An ac-
tion is associated with a transition and is represented in the abstract syntax as a String.
The condition of the boolean guard is also specified as a String. These strings represent
model level code defined by the designer (i.e.,written using an opaque action language).
In our experiments such model level code is written in the Groovy language8. Groovy
was chosen for its capacity to be dynamically invoked. However any other action lan-
guage could be used. Finally, a transition can also generate a set of event occurrences
when fired.

Note that in the abstract syntax, we refrain from adding concepts about the execution
state or functions. These concepts are specified in the DSA.

8 http://groovy.codehaus.org/

3.2 Domain Specific Actions Design

The domain-specific actions (DSA) enriches the abstract syntax with data represent-
ing the execution state and with functions representing the execution functions. Since
EMOF (and Ecore) does not include concepts for the definition of the behavioral se-
mantics and OCL is a side-effect free language, we have used the Kermeta language to
define the DSA of a DSML. Kermeta is an extension of Ecore that provides an action
language used to express the behavioral semantics of a DSL [24]. Using the Kermeta
language, an execution function is expressed as methods of the classes of the abstract
syntax [24]. The body of the method imperatively describes what is the effect of execut-
ing an instance of the concept. The Kermeta language is imperative, statically typed, and
includes classical control structures such as blocks, conditionals, loops and exceptions.
The Kermeta language also implements traditional object-oriented mechanisms for han-
dling multiple inheritance and generics. For multiple inheritance, Kermeta borrows the
semantics from the Eiffel programming language [25]. Kermeta does not provide any
solution to specify the concurrency model. Indeed, the concurrency semantic model is
provided through the Java implicit concurrency model embedded in the underlying exe-
cution environment. As a consequence, the designer can use a foreign function interface
mechanism to call the Java Thread API but there is no specific support to describe the
concurrency model explicitly.

In the approach and the language workbench proposed, the AS and the DSA are
conceptually and physically (at the file level) defined in two different modules. The
aspect keyword enables DSML engineers to bind the AS and the DSA together. It
allows DSML engineers to reopen a previously created class in the abstract syntax to
add some new pieces of information such as new methods (execution functions) or new
properties (execution state representing the semantic domain). It is inspired by open-
classes (aka. static introduction) [26].

In the case of TFSM (cf. Listing 1.1), we have added the currentState as an attribute
of T FSM. We have also added numberO f Ticks as an integer attribute of FSMClock.
All the instances of T FSM in a system possess a current state. Also, all instances of
FSMclock have an integer representing their actual time. The execution state of the
system is then a set of current states and a set of Integers. The choice of what should
be added as attribute depends on the information we want to capture in the execution
state of the models. Such information can usually be specified in various ways. For
instance, we could have specified the execution state by a set of sensitive transitions
instead of a set of current states. Kermeta aspects are also used to specify operations
on metaclasses. They provide an operational specification of the execution functions
as described in the DSA language unit. The advantage is then the executability of such
operations. In TFSM, we have added six operations:

– init() on T SFM: Operation init() is used to initialize the execution state of the
T FSM (i.e.,the current state in our case, lines 5 to 8).

– fire() on Transition: Operation f ire() is in charge of changing the current state from
the source state to the target state of the transition. It is also in charge of executing
the groovy code specified in the action attribute (lines 12 to 18).

– init() on FSMClock: Operation init() is used to initialize the numberOfTicks (not
shown in the listing).

– ticks() on FSMClock: Operation ticks() is used to increment the numberOfTicks of
FSMClock (line 24 to 27).

Listing 1.1. part of the Kermeta aspects specifying the DSA
1 a s p e c t c l a s s TFSM
2 {
3 //Attribute used at runtime to store the current state
4 a t t r i b u t e currenteState : tfsm::State
5 o p e r a t i o n i n i t () : String i s do
6 currentState := self.initialState
7 result:= "call to init() : " + name
8 end
9 }

10 a s p e c t c l a s s Transition
11 {
12 o p e r a t i o n fire() : String i s do
13 var groovyExpression : String i n i t self.action
14 var res1 : kermeta::standard::Object i n i t ex te r n org::
15 kermeta::extra::groovyembedded::GroovyEmbeder.runOnScript(

groovyExpression)
16 self.source.owningFSM.currentState := self.target
17 result := "fire: " + name + " -> " +self.action
18 end
19 }
20 a s p e c t c l a s s FSMClock
21 {
22 //Attribute used at runtime to store the number of tick
23 a t t r i b u t e numberOfTicks : Integer
24 o p e r a t i o n ticks() : void i s do
25 numberOfTicks := numberOfTicks + 1
26 result := "ticks: " + name
27 end
28 }

Note that while the DSAs are described by Kermeta aspects over the concepts of
the AS, none of them specifies the execution workflow (like a main() operation). The
schedule of the different operation calls is made by the concurrency model according
to the MOC used in the DSML.

3.3 Model of Computation Design

The MOC defines the concurrency, the synchronizations and the possibly timed causal-
ity relationships in a DSML. The meta-language used for the specification of the MOC
must be able to specify constraints on events independently of the AS and the DSA
on which it is applied. We have chosen the Clock Constraint Specification Language
(CCSL) [27] for specifying the MOC (at the DSML level), as well as to represent its
instances as concurrency models (at the model level). In CCSL, a concurrency model is
a set of constraints whose definitions and formal parameters are given in libraries. We
use the library mechanism to specify MOC specific constraints. These constraints spec-
ify the correct evolution of the events given as formal parameters of the constraints.
More precisely it is a reusable set of constraints considered as consistent with regards
to a specific MOC; it defines the possibly timed synchronizations and causality relation-
ships between some events and has already been shown to be a good candidate for the
specification of the concurrent and temporal aspects of a language [27]. It is not possi-
ble to specify any computational aspects in CCSL so that it fits with the separation of

the concurrent and temporal aspects in the MOC from the computational aspects in the
DSA.

We have defined new constraints dedicated to the TFSM MOC in a specific li-
brary. For instance we have defined TemporalTransition and EventTransition constraints
whose declarations are presented in Listing 1.29. Each declaration exposes a set of for-
mal parameters, which are needed to specify the constraint between the events (named
clocks in CCSL). For instance, for the temporal transition relationship, four events are
important, the event that starts the "timer", the event used to measure the time, the event
that disables the transition (i.e.,makes it non fireable until the next timer starts), and the
clock that actually fires the transition. Additionally, the integer representing the delay
after which the transition should be fired is also a parameter. Such parameters represent
the information that should be provided by a DSML so as the MOC can be used. Such
declarations do not make any assumptions about AS and DSA. These constraints define
the acceptable concurrency and the possibly timed synchronizations and causalities at
the language level. A change in the library affects the execution of all models expressed
in a language that uses the MOC (i.e.,the constraints).

Listing 1.2. Excerpt of a MoC library used for TFSM (using CCSL)
1 R e l a t i o n D e c l a r a t i o n TemporalTransition(TemporalTransition_MakeFireable:clock ,

TemporalTransition_RefClock:clock , TemporalTransition_Reset:clock ,
TemporalTransition_delay:int, TemporalTransition_Fire:clock)

2 R e l a t i o n D e c l a r a t i o n EventTransition(EventTransition_MakeFireable:clock ,
EventTransition_Trigger:clock , EventTransition_Reset:clock ,
EventTransition_Fire:clock)

3.4 Domain Specific Event Design

The DSE put MOC and DSA together to constitute the behavioral semantics of the DSML.
They contain the events relevant to the DSML perspective and how they are linked to
the execution functions of the DSA; and on the other hand they specify queries on the
AS to specify the actual parameters that have to be used by the concurrency model on
a specific model. To do so, a specific meta-language named ECL (standing for Event
Constraint Language [28]) is developed as an extension of OCL [29] with events. The
ECL file specifies the constraints used in the concurrency model for a specific model,
by specifying the link between the MOC, the DSA and the AS of a DSML. ECL benefits
from the OCL query language and its possibility to augment an abstract syntax with
additional attributes (without any side effects). Using ECL it is then possible to define
new DSE in the context of a specific concept of the AS. DSE also specify, if needed,
the execution function that must be called when specific events occur. For instance, in
the TFSM example which is partially represented in Listing 1.3, we have defined three
domain specific events in the context of FSMEvent, FSMClock and Transition (lines
5–10 in Listing 1.3). The events defined in the context of FSMClocks and Transition,
respectively call when they occur the execution function ticks() defined in the context
of FSMClock and the execution function f ire() defined in the context of Transition.

The ECL file imports a MOC library (line 2 in Listing 1.3). It is used to define some
invariants that specify in which context and with which parameter(s) a constraint from

9 The definitions are not given for the sake of clarity

the MOC is used. The specification of the actual parameters are specified by querying
the AS. To specify the mapping between MOC and DSA, it is also possible to create
intermediate events by using expressions over existing DSE. For instance, lines 13 to 23
represents the invariant that specifies that for each transition of the AS whose guard is
of type TemporalGuard, if the source state of this transition has more than one other
outgoing transition (line 16), then there is a constraint of type TemporalTransition in
the concurrency model (line 21). The parameters of the constraints can be queried on
the AS like in the line 17 or 22 and 23. It can also be specified by an expression over
existing domain specific events like specified in line 18 to 20, which specify a new event
defined by the Union of all the fire events from other outgoing transitions from the same
source state. It is used here to specify when the event transition must be disabled (see
the formal parameters line 8 in Listing 1.2). These queries define how the structure of
the AS is used to retrieve the actual parameters. For instance, the actual duration of the
temporal transition is defined by the afterDuration attribute defined in the AS (line 17).

Listing 1.3. Excerpt of the Domain-Specific Events of TFSM (using ECL)
1 import ’http://fr.inria.aoste.gemoc.example.tfsm ’
2 ECLImport "TFSMMoC.ccslLib"
3 package tfsm
4 // DSE definition , and mapping of the DSE to the DSA (i.e., Kermeta method)
5 c o n t e x t FSMEvent
6 def : occurs : Event()
7 c o n t e x t FSMClock
8 def : ticks : Event(s e l f .ticks())
9 c o n t e x t Transition

10 def : fire : Event(s e l f .fire())
11 // Mapping of the DSE to the MOC
12 c o n t e x t Transition
13 inv fireWhenTemporalGuardHoldsVariousTransition:
14 (s e l f .ownedGuard.oclIsKindOf(TemporalGuard)
15 and s e l f .source.outgoingTransitions ->
16 select(t|t <> s e l f)->size() > 0) i m p l i e s
17 let guardDelay : Integer = s e l f .ownedGuard.oclAsType(TemporalGuard).

afterDuration in
18 let otherFireFromTheSameState: Event =
19 Express ion Union (s e l f .source.outgoingTransitions ->
20 select(t|t <> s e l f).fire) in
21 R e l a t i o n TemporalTransition(s e l f .source.entering ,
22 s e l f .ownedGuard.oclAsType(TemporalGuard).onClock.ticks ,
23 otherFireFromTheSameState , guardDelay , s e l f .fire)
24 // Using a MoC constraint specifying a rendez -vous semantics
25 c o n t e x t FSMEvent
26 inv occursWhenSolicitate:
27 (s e l f .sollicitingTransitions ->size() >0) i m p l i e s
28 let AllTriggeringOccurrences : Event = Express ion
29 Union(s e l f .sollicitingTransitions.fire) in
30 R e l a t i o n FSMEventRendezVous(AllTriggeringOccurrences , s e l f .occurs)

Listing 1.3 shows another invariant, which defines the FSMEventRendezVous con-
straint on the MOC. This constraint is changed in section 4 to highlight the impact of
a MOC variation. From such a specification, it is possible to generate a CCSL specifi-
cation that represents the concurrency model for any model that conforms to the AS;
i.e.,a model that contains the actual constraints and their parameters according to a spe-
cific model. ECL restricts the requirements expressed in section 2. For instance, it is
not possible yet to specify how the result of an execution function call influences the
execution path taken by the execution engine at runtime. Such information is for now

defined in the configuration of the execution engine. Information about the execution
engine is given in the next subsection.

3.5 Execution Engine

Each unit of a DSML is described in our language workbench using technologies built
on top of the Eclipse Modeling Framework (EMF). To summarize, we describe the AS
with the meta-language Ecore part of EMF (1 in Fig. 3). Then we describe the DSA
(both execution state and functions) with Kermeta [24] (2 in Fig. 3). We mainly use
Kermeta for its weaving capability on the abstract syntax. DSA are specified using as-
pects on metaclasses that enable the addition of execution state attributes and execution
functions. Then, we specify the MOC by constraints definition as a CCSL library (3 in
Fig. 3). Finally we define DSE and link them with the execution functions by using ECL
(4 in Fig. 3). ECL is also used to specify, at the language level, the constraints used in a
concurrency model for a specific model.

In the workbench, EMF generates an API for the AS that can load and save models
conforming to the DSML. Kermeta methods and properties are compiled as a set of
Scala traits that are woven within this model API [30]. As a result, Kermeta provides
an extended version of the Java API, encapsulated in a jar file, on which it is possible
to call the execution functions weaved within the AS (5 in Fig. 3). Then, for a specific
model conforming to the DSML, the ECL file can be used to automatically create a
concurrency model in CCSL (6 in Fig. 3). The concurrency model is directly linked to
the model elements. This model represents all the partial ordering of events consid-
ered as correct with regards to the MoC. In our workbench, it is interpreted by a tool
named TIMESQUARE [31] to provide one partial ordering between the domain specific
events in the model (7 in Fig. 3). To call the execution functions defined in the DSA,
TIMESQUARE has been extended in our language workbench with a new back-end able
to use the jar files to execute the model (8 in Fig. 3). In the proposed language work-
bench, EMF serves as a common technical foundation. Kermeta provides an API fully
compatible with EMF that eases the integration within the language workbench.

As a result, this language workbench provides a set of Java libraries allowing to
call execution functions on a model. The call to the execution functions is driven by
TIMESQUARE. The (possibly simultaneous) ordering of the calls to the execution func-
tions represents the concurrent-aware execution of the model. We illustrate in the next
section the use of the TFSM language on five concurrent TFSMs, which model road
traffic lights and their controller.

4 Demonstration and Discussion: Using TFSM on Concurrent
Road Traffic Lights

To go further in our approach, we present an example of five concurrent TFSMs built
using the executable language proposed in the previous sections and the tools mentioned
above. Our case study is a simple modeling of crossroad traffic lights. In our example,
the traffic lights regulate the traffic on a main road and a secondary road. The traffic
lights are synchronized differently during the day or the night. During the day, the two

(executable)
Model

(executable)
Modeling
Language

Metamodeling
Languages

CCSL Kermeta Ecore

MoC.lib.ccsl
(MoC)

MyDSML
.km

(DSA)

MyDSML
.ecore
(AS)

ECL

DSE4MyDSML
.ecl

(MoC<->DSA)

aModelMyDSML
DSA-AS.jar

MyDSML
Concurrency
Model.ccslLegend

code generation

<<dependsOn>>

<<conformsTo>>

123

4
5

6

7

8

Fig. 3. Architecture of the language workbench and the associated execution engine for
concurrent model execution

traffic lights on the main road are red during two minutes and then switch to green. They
remain green until a controller sends the switch event that make the two main traffic
lights become red again. The two other traffic lights have exactly the same behavior
but are green when the main traffic lights are red and red when the main traffic lights
are green. The controller has two states Day and Night that change depending on the
reading of a sensor answering whether it is night or day. During the day it sends a switch
event every 4th minute and during the night every 6th minute. In Figure 4, the controller
TFSM (named Control) and one of the main road traffic lighs (named Semaphore0) are
shown. The abstract syntax has been tooled with Obeo designer to obtain a graphical
concrete syntax.

By using this example we want to highlight the impact of a simple change in a
MOC applied on the same AS/DSA. The MOC variation consists in the synchronization
between the firing of a transition, and the production of the occurrences of its gen-

Fig. 4. Partial traffic light model

Fig. 5. Timing output of the simulation with the rendez-vous semantics

eratedEvents. In the first case, we use a strong synchronization, meaning that if one
transition is fired and generates an event occurrence, all the transitions waiting for this
event are simultaneously fired (The transitions with an event guard on this event). For
that purpose, we use a constraint named FSMEventRendezVous in the MOC library (see
the lines 27 to 32 of the Listing 1.3). Once the concurrency model has been generated
for the model of Figure 4, we can execute the concurrency model in TIMESQUARE.
The model execution produced a timing diagram representing the occurrences of the
event according to the time (Figure 5). On this picture we can see that the firings of the
transition named Day_to_Day from the traffic light controller are simultaneous with
the occurrences of the switch event, themselves simultaneous with the firings of the
Green0_to_Red0 transition. In this case, the time spent in the Red0 state and the time in
the Green0 state is the same: 2 minutes. This mechanism is a strong synchronization so
that if the TFSM of Semaphore0 (Figure 4) is in the Red0 state when the Day_to_Day
transition is fired, a deadlock happens.

In a second case, we have changed this strong synchronization with a causal re-
lationship, meaning that if one transition is fired and generates an event occurrence,
all the transitions waiting for this event must be fired in a later step (it abstracts the
sending and the reception of a FSMEvent). For this purpose, we have modified the
MOC library and have replaced the FSMEventRendezVous with a constraint named FS-
MEventSendReceive, defining the causal relationship. In this case, all the parameters
remain identical, the constraint definition in the MOC library is the only modification
made. The model execution produces a different timing diagram and the time spent in
the Green0 and in Red0 state is now different. The time between the Day_to_Day tran-
sition firing and the occurrence of the switch event is not bound and could vary. In this
case, contrary to the previous case, if the TFSM of Semaphore0 is in the Red0 state
when the Day_to_Day transition is fired, no deadlock happens.

By defining the concurrent TFSM language according to the approach and work-
bench proposed in this paper, we have executed the TFSM instances concurrently.
By changing a single constraint in the MOC library, we get a different behavior of
the system, highlighting the importance to make explicit and to reify the MOC and

Fig. 6. Timing output of the simulation with the send-receive semantics

DSE. The presentation of the whole example with video of its compilation and execu-
tion (including diagram animation) can be found on the companion web page: http:
//gemoc.org/sle13. This web page also introduces two other usages of the language
workbench. The first one shows the definition of the Actor Computing Model using
the workbench. It allows the simulation of the behavior of a set of Actors. The second
one illustrates an example of the Logo language10 with two turtles sharing the same
playground.

5 Related Work

Much work has been done on the design and implementation of both DSML and models
of computation. In this paper, we propose a conceptual and technical framework to take
benefits from both underlying theory. This section presents related work in the field of
language design and implementation, and then in the field of models of computation.

The problem of the modular design of languages has been explored by several
authors (e.g., [32,33]). For example, JastAdd [33] combines traditional use of higher
order attribute grammars with object-orientation and simple aspect-orientation (static
introductions) to get a better modularity mechanism. With a similar support for object-
orientation and static introductions, Kermeta and its aspect paradigm can be seen as an
analogue of JastAdd in the DSML world. The major drawback of such approach is that
none of them provides a native support for concurrency.

A language workbench is a software package for designing software languages [34].
For instance, it may encompass parser generators, specialized editors, DSLs for ex-
pressing the semantics and others. Early language workbenches include Centaur [35],
ASF+SDF [36], and TXL [37]. Among more recent proposals, we can cite Generic
Model Environment (GME) [38], Metacase’s MetaEdit+ [39], Microsoft’s DSL Tools
[40], Krahn et al’s Monticore [41], Kats and Visser’s Spoofax [42], Jetbrain’s MPS
[43]. The important difference of our approach is that we explicitly reify the concur-
rency concern in the design of an executable language, providing a dedicated tooling

10 http://en.wikipedia.org/wiki/Logo_(programming_language)

http://gemoc.org/sle13
http://gemoc.org/sle13
http://gemoc.org/sle13
http://gemoc.org/sle13
http://en.wikipedia.org/wiki/Logo_(programming_language)

for its implementation and reuse. Our approach is also 100% compatible with all EMF-
based tools (at the code level, not only at the abstract syntax level provided by Ecore),
hence designing a DSL with our approach easily allows reusing the rich ecosystem of
Eclipse/EMF.

Models of computation, and in particular the concurrency concern, have been mainly
tooled in three different workbench: Ptolemy [6], ModHel’X [44] and ForSyDe [45].
Each of them have their own pros and cons but they are all based on a specific abstract
syntax and API. On one hand the unique abstract syntax avoids their use in the context
of specific DSMLs and on the other hand the use of an API to apply a specific MOC cre-
ates a gap between the MOC theory and the corresponding framework. In our approach
we use the notion of DSE to link a MOC to the DSA of a specific DSML and we use CCSL
to specify the MOC in a formal way, closer to theory like event structures or tagged sig-
nals. A similar approach has been used in BIP [46], where a specific algebra is used
to describe the interactions through connectors between behaviors expressed in timed
automata. From the properties of the connectors, it is possible to predict global proper-
ties of the models. This approach is interesting in its analysis capacity but is tailored to
the composition of timed automata. Finally another approach based on CCSL has been
used in [47] to describe two MOC and the interactions between heterogeneous models
of computation. This approach improved ModHel’X workbench but is still dedicated
to apply a MOC to a specific abstract syntax. However, it gives good hint for the use of
the approach proposed in this paper for the composition of heterogeneous executable
modeling languages.

6 Conclusion and Perspectives

This work proposes an approach that reifies the key concerns to design and implement
a concurrency-aware executable DSML (AS, DSA, MOC and DSE). The approach is sup-
ported by a language workbench based on EMF, including a meta-language dedicated to
each concern to design concurrency-aware executable DSMLs in a modular way. Then,
the implementation of a DSML automatically results in a dedicated environment for
concurrent execution of the conforming models. The explicit modeling of concurrency
as first-class concern paves the way to a full understanding and configuration ability of
the behavioral semantics. Additionally, the modular design enables the reuse of exist-
ing MoCs that come with specific analysis capabilities and tool support. We illustrate
our approach and language workbench on the design, the implementation and the use
of variants, of concurrent and timed finite state machine. A complementary video is
available on the companion webpage, as well as other DSML families implemented
according to our approach: http://gemoc.org/sle13.

In future works, we plan to focus more on the DSA and DSE relationships. Up to
now, the events are driving the execution of actions, but only a crude feedback is al-
lowed from the actions. The understanding of what kind of feedback is expected needs
to be further explored. Finally, the explicit definition of concurrency in the behavioral
semantics of DSML opens many perspectives. In particular, we are exploring the way
to support heterogeneous execution models (e.g., synchronization and composition of

http://gemoc.org/sle13
http://gemoc.org/sle13

interpreter or compiler). The goal here is to make explicit the composition of heteroge-
neous DSMLs by using the information provided by the reified language units.

References

1. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable DSMLs and
associated V&V tools. In: APSEC, IEEE (December 2012)

2. Object Management Group, Inc.: Semantics of a Foundational Subset for Executable UML
Models (fUML), v1.0. (2011)

3. Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridging the Chasm
between Executable Metamodeling and Models of Computation. In: SLE, Springer (2012)

4. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of computa-
tion. IEEE Trans. on CAD of Integrated Circuits and Systems 17(12) (1998) 1217–1229

5. Jantsch, A.: Modeling Embedded Systems and SoCs. Morgan Kaufmann Publishers Inc.
(2004)

6. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity – the Ptolemy approach. Proc. of the IEEE 91(1) (2003)

7. Plotkin, G.D.: A structural approach to operational semantics. (1981)
8. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use of graph transformations for the

formal specification of model interpreters. Journal of Universal Computer Science 9 (2003)
9. Bendraou, R., Jézéquel, J.M., Fleurey, F.: Combining aspect and model-driven engineering

approaches for software process modeling and execution. In: Trustworthy Software Devel-
opment Processes. LNCS. Springer (2009) 148–160

10. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems 2(2)
(1968) 127–145

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10) (1969) 576–580

12. Gries, D.: The science of programming. Volume 198. Springer (1981)
13. Winskel, G.: The formal semantics of programming languages: an introduction. MIT press

(1993)
14. Fredlund, L.a., Jonsson, B., Parrow, J.: An implementation of a translational semantics for

an imperative language. In: CONCUR. LNCS. Springer (1990) 246–262
15. Scott, D.S., Strachey, C.: Toward a mathematical semantics for computer languages. Oxford

University Computing Laboratory, Programming Research Group (1971)
16. Milner, R.: A calculus of communicating systems. Springer (1982)
17. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM 21(8)

(1978) 666–677
18. Petri, C.A.: Introduction to general net theory. In: Advanced Course: Net Theory and Appli-

cations. (1975) 1–19
19. Winskel, G.: Event structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.: Petri Nets:

Applications and Relationships to Other Models of Concurrency. LNCS. Springer (1987)
20. McCarthy, J.: Towards a mathematical science of computation. Information processing 62

(1962) 21–28
21. Boulanger, F., Hardebolle, C.: Simulation of Multi-Formalism Models with ModHel’X. In:

ICST, IEEE (2008) 318–327
22. Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Core. (2006)
23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework

(2nd Edition). Addison-Wesley (2008)

24. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-Oriented Meta-
Languages. In: MoDELS. LNCS, Springer (2005) 264–278

25. Meyer, B.: Eiffel: the language. Prentice-Hall, Inc. (1992)
26. Clifton, C., Leavens, G.T.: Multijava: Modular open classes and symmetric multiple dispatch

for java. In: OOPSLA. (2000) 130–145
27. Mallet, F., DeAntoni, J., André, C., de Simone, R.: The Clock Constraint Specification Lan-

guage for building timed causality models. Innovations in Systems and Software Engineering
6 (2010) 99–106

28. Deantoni, J., Mallet, F.: ECL: the Event Constraint Language, an Extension of OCL with
Events. Research report RR-8031, INRIA (July 2012)

29. Object Management Group, Inc.: UML Object Constraint Language (OCL) 2.0. (2003)
30. Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup of meta-

languages and its implementation in the kermeta language workbench. SoSyM (2013)
31. Deantoni, J., Mallet, F.: TimeSquare: Treat your Models with Logical Time. In: TOOLS.

Volume 7304 of LNCS., Springer (May 2012) 34–41
32. Wyk, E.V., Moor, O.d., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute grammars

for modular language design. In: CC’02, Springer (2002) 128–142
33. Ekman, T., Hedin, G.: The JastAdd system – modular extensible compiler construction. Sci.

Comput. Program. (2007) 14–26
34. Volter, M.: From Programming to Modeling-and Back Again. Software, IEEE 28(6) (2011)
35. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur:

the system. In: 3rd ACM software engineering symposium on Practical software develop-
ment environments, ACM (1988) 14–24

36. Klint, P.: A meta-environment for generating programming environments. ACM TOSEM
2(2) (1993) 176–201

37. Cordy, J.R., Halpern, C.D., Promislow, E.: TXL: a rapid prototyping system for program-
ming language dialects. In: Conf. Int Computer Languages. (1988) 280–285

38. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. IEEE Computer 30(4) (1997)
39. Tolvanen, J., Rossi, M.: MetaEdit+: defining and using domain-specific modeling languages

and code generators. In: Companion of the 18th annual ACM SIGPLAN conference OOP-
SLA, ACM (2003) 92–93

40. Cook, S., Jones, G., Kent, S., Wills, A.: Domain-Specific Development with Visual Studio
DSL Tools. Addison-Wesley Professional (2007)

41. Krahn, H., Rumpe, B., Volkel, S.: MontiCore: Modular Development of Textual Domain
Specific Languages. In: Objects, Components, Models and Patterns. LNBIP, Springer (2008)

42. Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative specification
of languages and IDEs. In: OOPSLA ’10, ACM (2010) 444–463

43. Voelter, M., Solomatov, K.: Language Modularization and Composition with Projectional
Language Workbenches illustrated with MPS. In: SLE. LNCS, Springer (2010)

44. Hardebolle, C., Boulanger, F.: Multi-Formalism Modelling and Model Execution. Interna-
tional Journal of Computers and their Applications 31(3) (July 2009) 193–203

45. Sander, I., Jantsch, A.: System Modeling and Transformational Design Refinement in
ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 23(1) (2004) 17–32

46. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP. In: 4th
IEEE SEFM. (September 2006) 3–12

47. Boulanger, F., Dogui, A., Hardebolle, C., Jacquet, C., Marcadet, D., Prodan, I.: Semantic
Adaptation Using CCSL Clock Constraints. In: Workshops and Symposia at MODELS
2011. LNCS, Springer (2012) 104–118

	Reifying Concurrency for Executable Metamodeling
	 Benoit Combemale, Julien De Antoni, Matias Vara Larsen, Frédéric Mallet, Olivier Barais, Benoit Baudry, Robert B. France

