1,029 research outputs found

    Materialising energy and water resources in everyday practices: Insights for securing supply systems

    Get PDF
    Policies to secure energy and water supplies from the impacts of climate change are currently being developed or are in place in many developed nations. Little is known about how these policies of security, and the systems of resource provision they prioritise, affect householders' capacity to adapt to climate change. To better understand the connections between resource provision and consumption, this paper explores the notion that different 'energies' and 'waters' can be conceptualised as material elements of social practices, which shape the way practices are performed. We draw on a study of Australian migrants and their experiences with different resource provision systems in multiple countries, time periods and contexts across three generations. We discuss the differing characteristics of energy and water provision across three broad resource 'eras', and the way resources enable or reduce resourcefulness, adaptive capacity and resilience. We find that policy makers may inadvertently reduce householders' capacity to respond and adapt to climate change impacts by prioritising the resource characteristics of immateriality, abundance and homogeneity. We conclude that policy which prioritises the resource characteristics of materiality, diversity and scarcity is an important, underutilised and currently unacknowledged source of adaptive capacity

    Damped Ly{\alpha} Absorption Systems in Semi-Analytic Models with Multiphase Gas

    Get PDF
    We investigate the properties of damped Ly{\alpha} absorption systems (DLAs) in semi-analytic models of galaxy formation, including partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases with a molecular gas-based star formation recipe. We investigate two approaches for partitioning gas into these constituents: a pressure-based and a metallicity-based recipe. We identify DLAs by passing lines of sight through our simulations to compute HI column densities. We find that models with "standard" gas radial profiles - where the average specific angular momentum of the gas disc is equal to that of the host dark matter halo - fail to reproduce the observed column density distribution of DLAs. These models also fail to reproduce the distribution of velocity widths {\Delta}v, overproducing low {\Delta}v relative to high {\Delta}v systems. Models with "extended" radial gas profiles - corresponding to gas discs with higher specific angular momentum - are able to reproduce quite well the column density distribution of absorbers over the column density range 19 < log NHI < 22.5 in the redshift range 2 < z < 3.5. The model with pressure-based gas partitioning also reproduces the observed line density of DLAs, HI gas density, and {\Delta}v distribution at z < 3 remarkably well. However all of the models investigated here underproduce DLAs and the HI gas density at z > 3. If this is the case, the flatness in the number of DLAs and HI gas density over the redshift interval 0 < z < 5 may be due to a cosmic coincidence where the majority of DLAs at z > 3 arise from intergalactic gas in filaments while those at z < 3 arise predominantly in galactic discs. We further investigate the dependence of DLA metallicity on redshift and {\Delta}v, and find reasonably good agreement with the observations, particularly when including the effects of metallicity gradients (abbrv.).Comment: 27 pages, 15 figures, submitted to MNRA

    The great Australian nightmare? The problem of escalating housing aspirations and expectations and adaptation to climate change

    Get PDF
    The dominant trend in Australian cities towards large, detached, energy intensive dwellings in poorly serviced, low-density, urban fringe locations, leaves governments, households and communities more vulnerable to the impacts of climate change and does little to aid mitigation. Given the multiple and competing objectives of the stakeholders involved, reducing domestic energy consumption is more complex than attempting to change what Shove (2010) refers to as the ABC (&#039;attitudes, behaviours and choices&#039;) of individual householders. What is needed is a better understanding of the dynamic and integrated processes resulting in escalating expectations and aspirations for Australian housing. Along this vein, we suggest the &#039;great Australian dream&#039; is actually becoming a great Australian nightmare. In our critique we investigate what is meant by a &#039;normal&#039; home and how aspirations and expectations for housing have changed over time. Drawing on theories of social practice we look at what goes on inside homes to explore how everyday practices and the design of houses are mutually constitutive. In our analysis we find that seemingly common-place aspirations for housing are the result of changing practices, such as cooking, eating and entertaining, which are resulting in escalating trajectories of consumption. We conclude by suggesting how policy attention could be refocused on transforming the relationship between house design and everyday practice to address climate change

    The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey

    Get PDF
    We calculate the angular correlation function of galaxies in the Two Micron All Sky Survey. We minimize the possible contamination by stars, dust, seeing and sky brightness by studying their cross correlation with galaxy density, and limiting the galaxy sample accordingly. We measure the correlation function at scales between 1-18 arcdegs using a half million galaxies. We find a best fit power law to the correlation function has a slope of 0.76 and an amplitude of 0.11. However, there are statistically significant oscillations around this power law. The largest oscillation occurs at about 0.8 degrees, corresponding to 2.8 h^{-1} Mpc at the median redshift of our survey, as expected in halo occupation distribution descriptions of galaxy clustering. We invert the angular correlation function using Singular Value Decomposition to measure the three-dimensional power spectrum and find that it too is in good agreement with previous measurements. A dip seen in the power spectrum at small wavenumber k is statistically consistent with CDM-type power spectra. A fit of CDM-type power spectra to k < 0.2 h Mpc^{-1} give constraints of \Gamma_{eff}=0.116 and \sigma_8=0.96. This suggest a K_s-band linear bias of 1.1+/-0.2. This \Gamma_{eff} is different from the WMAP CMB derived value. On small scales the power-law shape of our power spectrum is shallower than that derived for the SDSS. These facts together imply a biasing of these different galaxies that might be nonlinear, that might be either waveband or luminosity dependent, and that might have a nonlocal origin.Comment: 14 pages, 20 figures, to be published in ApJ January 20th, revision included two new figures, version with high resolution figures can be found here http::ww

    The first detection of Far-Infrared emission associated with an extended HI disk. The case of NGC 891

    Full text link
    Spiral galaxies in the Local Universe are commonly observed to be embedded in extended disks of neutral hydrogen - the so called ``extended HI disks''. Based on observations made using the ISOPHOT instrument on board the Infrared Space Observatory, we report the first detection of cold dust in the extended HI disk of a spiral galaxy. The detection was achieved through a dedicated deep Far-Infrared observation of a large field encompassing the entire HI disk of the edge-on spiral galaxy NGC 891. Our discovery indicates that the extended HI disk of NGC 891 is not primordial in origin.Comment: accepted for publication in Astronomy and Astrophysics Letter

    The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies

    Get PDF
    The relative contribution of baryons and dark matter to the inner regions of spiral galaxies provides critical clues to their formation and evolution, but it is generally difficult to determine. For spiral galaxies that are strong gravitational lenses, however, the combination of lensing and kinematic observations can be used to break the disk-halo degeneracy. In turn, such data constrain fundamental parameters such as i) the mass density profile slope and axis ratio of the dark matter halo, and by comparison with dark matter-only numerical simulations the modifications imposed by baryons; ii) the mass in stars and therefore the overall star formation efficiency, and the amount of feedback; iii) by comparison with stellar population synthesis models, the normalization of the stellar initial mass function. In this first paper of a series, we present a sample of 16 secure, 1 probable, and 6 possible strong lensing spiral galaxies, for which multi-band high-resolution images and rotation curves were obtained using the Hubble Space Telescope and Keck-II Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The sample includes 8 newly discovered secure systems. [abridged] We find that the SWELLS sample of secure lenses spans a broad range of morphologies (from lenticular to late-type spiral), spectral types (quantified by Halpha emission), and bulge to total stellar mass ratio (0.22-0.85), while being limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for exploring the relationship between dark and luminous matter in a broad range of galaxies. We find that the deflector galaxies obey the same size-mass relation as that of a comparison sample of elongated non-lens galaxies selected from the SDSS survey. We conclude that the SWELLS sample is consistent with being representative of the overall population of high-mass high-inclination disky galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres

    A Lyman-alpha blob in the GOODS South field: evidence for cold accretion onto a dark matter halo

    Full text link
    We report on the discovery of a z = 3.16 Lyman-alpha emitting blob in the GOODS South field. The blob has a total Ly-alpha luminosity of ~ 10^(43) erg s^(-1) and a diameter larger than 60 kpc. The available multi-wavelength data in the GOODS field consists of 13 bands from X-rays (Chandra) to infrared (Spitzer). Unlike other discovered Ly-alpha blobs, this blob shows no obvious continuum counter-part in any of the broad-bands. In particular, no optical counter-parts are found in the deep HST/ACS imaging available. For previously published blobs, AGN (Active Galactic Nuclei) or 'superwind' models have been found to provide the best match with the data. We here argue that the most probable origin of the extended Ly-alpha emission from the blob in the GOODS South field is cold accretion onto a dark matter halo.Comment: 4 pages, 2 tables, 2 figures, Accepted to A&A Letters, minor changes to tex

    NICMOS images of JVAS/CLASS gravitational lens systems

    Get PDF
    We present Hubble Space Telescope (HST) infrared images of four gravitational lens systems from the JVAS/CLASS gravitational lens survey and compare the new infrared HST pictures with previously published WFPC2 HST optical images and radio maps. Apart from the wealth of information that we get from the flux ratios and accurate positions and separations of the components of the lens systems that we can use as inputs for better constraints on the lens models we are able to discriminate between reddening and optical/radio microlensing as the possible cause of differences observed in the flux ratios of the components across the three wavelength bands. Substantial reddening has been known to be present in the lens system B1600+434 and has been further confirmed by the present infrared data. In the two systems B0712+472 and B1030+074 microlensing has been pinpointed down as the main cause of the flux ratio discrepancy both in the optical/infrared and in the radio, the radio possibly caused by the substructure revealed in the lensing galaxies. In B0218+357 however the results are still not conclusive. If we are actually seeing the two "true" components of the lens system then the flux ratio differences are attributed to a combination of microlensing and reddening or alternatively due to some variability in at least one of the images. Otherwise the second "true" component of B0218+357 maybe completely absorbed by a molecular cloud and the anomalous flux density ratios and large difference in separation between the optical/infrared and radio that we see can be explained by emission from either a foreground object or from part of the lensing galaxy.Comment: 10 pages, 4 figures (original higher resolution figures can be obtained at the e-mail above), to appear in MNRAS (accepted
    • …
    corecore