102 research outputs found

    Amyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate

    Get PDF
    BACKGROUND: The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimer's disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon--prostate tissue remodelling in middle-aged and elderly men. METHODOLOGY/PRINCIPAL FINDINGS: By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. CONCLUSIONS/SIGNIFICANCE: These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.Original Publication:Kiran Yanamandra, Oleg Alexeyev, Vladimir Zamotin, Vaibhav Srivastava, Andrei Shchukarev, Ann-Christin Brorsson, Gian Gaetano Tartaglia, Thomas Vogl, Rakez Kayed, Gunnar Wingsle, Jan Olsson, Christopher M Dobson, Anders Bergh, Fredrik Elgh and Ludmilla A Morozova-Roche, Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate., 2009, PloS one, (4), 5, e5562.http://dx.doi.org/10.1371/journal.pone.000556

    Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study

    Get PDF
    Correction: Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study. PLoS ONE 9(1): 10.1371/annotation/dbb84118-9ada-43e4-8734-8f8322be1a59. doi: 10.1371/annotation/dbb84118-9ada-43e4-8734-8f8322be1a59Understanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation. The curves of native state depletion also follow high-order irreversible kinetics. The analysis is consistent with the existence of low-populated and heterogeneous oligomeric precursors of fibrillation that form by association of partially unfolded protein monomers. An increase in NaCl concentration accelerates fibrillation but reduces the apparent order of the nucleation kinetics; and a double mutant (K43A, N47A) Spc-SH3 domain, largely unfolded under native conditions and prone to oligomerize, fibrillates with apparent first order kinetics. On the light of these observations, we propose a simple kinetic model for the nucleation event, in which the monomer conformational unfolding and the oligomerization of an amyloidogenic intermediate are rapidly pre-equilibrated. A conformational change of the polypeptide chains within any of the oligomers, irrespective of their size, is the rate-limiting step leading to the amyloid nuclei. This model is able to explain quantitatively the initial rates of aggregation and the observed variations in the apparent order of the kinetics and, more importantly, provides crucial thermodynamic magnitudes of the processes preceding the nucleation. This kinetic approach is simple to use and may be of general applicability to characterize the amyloidogenic intermediates and oligomeric precursors of other disease-related proteins.This work was financed by the Andalucía Government (grant FQM-02838), the Spanish Ministry of Science and Innovation (grant BIO2009-07317), and the European Regional Development Fund of the European Union. D. Ruzafa is recipient of a research fellowship from the F.P.U. program of the Spanish Ministry of Education. L. Varela is financed by the G.R.E.I.B. program of the University of Granada

    A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles

    Get PDF
    A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells

    Amyloid-based nanosensors and nanodevices

    Full text link

    The amyloid : structure, properties and application

    No full text
    Protein aggregation, leading to the formation and depositions of amyloids, is a cause for a number of diseases such as Alzheimer’s and Creutzfeld-Jacob’s disease, systemic amyloidoses, type II diabetes and others . More than 20 proteins are associated with protein misfolding diseases and even a larger number of proteins can self-assemble into amyloid in vitro. Relating structural and functional properties of amyloid is of particular interest, as this will lead to the identification of the main factors and mechanisms involved in the process of protein misfolding and aggregation; consequently, this will provide a basis for developing new strategies to treat protein misfolding diseases. The aim of the thesis is to investigate structural aspects of amyloid formation and relate that to the functional properties of amyloid. The first paper describes the amyloid formation of equine lysozyme (EL). We have demonstrated that EL enters an amyloid forming pathways under conditions where the molten globule state is populated. We have found that the morphology of the amyloids depend on the calcium-binding to lysozyme, specifically the holo-protein assembles into short, linear protofilaments, while the apo-EL forms ring-shaped structures. The morphology of EL amyloid significantly differs from the amyloid fibrils of human and hen lysozymes. We have suggested that the stable alpha-helical core of EL, which remains structured in the molten globule intermediate, may obstruct the formation of fibrilar interface and therefore leads to assembly of short, curly fibrils and rings.In the second paper, we describe the cytotoxicity of EL amyloids. We have analysed the amyloid intermediates on the pathway towards amyloid fibrils. The sizes of amyloid oligomers were determined by atomic force microscopy (AFM) and the formation of cross-beta sheet was shown by thioflavin T (ThT) binding. The toxicity studies show that the oligomers formed during amyloid growth phase are toxic to a range of cell lines and cultures and the toxicity is size-dependant.The last manuscript describes a novel method for manufacturing of silver nanowires by the biotemplating using amyloid fibrils. The amyloid assembled from an abundant and cheap hen egg white lysozyme was used as a scaffold for casting ultrathin silver nanowires. We have manufactured nanowires with a diameter of 1.0-2.5 nm and up to 2 micrometers in length. Up to date, it is the thinnest silver nanowires produced by using biotemplating and at least one order of magnitude thinner than nanowires manufactured by chemical synthesis

    Cylindrical Phase Shifters with Solid-state Plasma

    No full text
    The investigation results of n-InP cylindrical phase shifters with solid-state plasma are presented in this paper. Furthermore, dispersion characteristics of the main mode HE11 of phase shifters with different external dielectric layers are calculated. According to the results of the investigation, the use of TM-15 dielectric and without dielectric is more preferred for phase shifters, as far as they correspond to the phase shifters working range wider in the range of magnetic flux density (0–0.5) T
    • …
    corecore