21 research outputs found

    Multi-Ancestry Genome-Wide Association Analyses Improve Resolution of Genes and Pathways Influencing Lung Function and Chronic Obstructive Pulmonary Disease Risk

    Get PDF
    Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies

    Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF
    Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies

    Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers

    No full text
    The anticancer activities of Withaferin-A (Wi-A) and Withanone (Wi-N) from Ashwagandha and Caffeic Acid Phenethyl Ester (CAPE) from honeybee propolis have been well documented. Here, we examined the binding potential of these natural compounds to inhibit the constitutive phosphorylation of epidermal growth factor receptors (EGFRs). Exon 20 insertion mutants of EGFR, which show resistance to various FDA approved drugs and are linked to poor prognosis of lung cancer patients, were the primary focus of this study. Apart from exon 20 insertion mutants, the potential of natural compounds to serve as ATP competitive inhibitors of wildtype protein and other common mutants of EGFR, namely L858R and exon19del, were also examined. The potential of natural compounds was compared to the positive controls such as erlotinib, TAS6417 and poziotinib. Similar to known inhibitors, Wi-A and Wi-N could displace and binds at the ATP orthosteric site of exon19del, L858R and exon20, while CAPE was limited to wildtype EGFR and exon 20 insertion mutants only. Moreover, the binding free energy of the natural drugs against EGFRs was also comparable to the positive controls. This computational study suggests that Wi-A and Wi-N have potential against multiple mutated EGFRs, warranting further in vitro and in vivo experiments

    Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone

    No full text
    Withaferin-A (Wi-A), a secondary metabolite extracted from Ashwagandha (Withania somnifera), has been shown to possess anticancer activity. However, the molecular mechanism of its action and the signaling pathways have not yet been fully explored. We performed an inverse virtual screening to investigate its binding potential to the catalytic site of protein kinases and identified ABL as a strong candidate. Molecular docking and molecular dynamics simulations were undertaken to investigate the effects on BCR-ABL oncogenic signaling that is constitutively activated yielding uncontrolled proliferation and inhibition of apoptosis in Chronic Myeloid Leukemia (CML). We found that Wi-A and its closely related withanolide, Withanone (Wi-N), interact at both catalytic and allosteric sites of the ABL. The calculated binding energies were higher in the case of Wi-A at catalytic site (−82.19 ± 5.48) and allosteric site (−67.00 ± 4.96) as compared to the clinically used drugs Imatinib (−78.11 ± 5.21) and Asciminib (−54.00 ± 6.45) respectively. Wi-N had a lesser binding energy (−42.11 ± 10.57) compared to Asciminib at the allosteric site. The interaction and conformational changes, subjected to ligand interaction, were found to be similar to the drugs Imatinib and Asciminib. The data suggested that Ashwagandha extracts containing withanolides, Wi-A and Wi-N may serve as natural drugs for the treatment of CML. Inhibition of ABL is suggested as one of the contributing factors of anti-cancer activity of Wi-A and Wi-N, warranting further in vitro and in vivo experiments

    Bioinformatics and Molecular Insights to Anti-Metastasis Activity of Triethylene Glycol Derivatives

    No full text
    The anti-metastatic and anti-angiogenic activities of triethylene glycol derivatives have been reported. In this study, we investigated their molecular mechanism(s) using bioinformatics and experimental tools. By molecular dynamics analysis, we found that (i) triethylene glycol dimethacrylate (TD-10) and tetraethylene glycol dimethacrylate (TD-11) can act as inhibitors of the catalytic domain of matrix metalloproteinases (MMP-2, MMP-7 and MMP-9) by binding to the S1’ pocket of MMP-2 and MMP-9 and the catalytic Zn ion binding site of MMP-7, and that (ii) TD-11 can cause local disruption of the secondary structure of vascular endothelial growth factor A (VEGFA) dimer and exhibit stable interaction at the binding interface of VEGFA receptor R1 complex. Cell-culture-based in vitro experiments showed anti-metastatic phenotypes as seen in migration and invasion assays in cancer cells by both TD-10 and TD-11. Underlying biochemical evidence revealed downregulation of VEGF and MMPs at the protein level; MMP-9 was also downregulated at the transcriptional level. By molecular analyses, we demonstrate that TD-10 and TD-11 target stress chaperone mortalin at the transcription and translational level, yielding decreased expression of vimentin, fibronectin and hnRNP-K, and increase in extracellular matrix (ECM) proteins (collagen IV and E-cadherin) endorsing reversal of epithelial–mesenchymal transition (EMT) signaling

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF
    Publisher Copyright: © 2023. The Author(s).Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.Peer reviewe
    corecore