4,420 research outputs found

    Study of quasimonoenergetic electron bunch generation in self-modulated laser wakefield acceleration using TW or sub-TW ultrashort laser pulses

    Get PDF
    This work presents a study on laser wakefield electron acceleration in the self-modulated regime (SM-LWFA) using 50-fs laser pulses with energy on the mJ scale, at λ = 0.8 μm, impinging on a thin H2 gas jet. Particle-in-cell simulations were performed using laser peak powers ranging from sub-terawatt to a few terawatts and plasma densities varying from the relativistic self-focusing threshold up to values close to the critical density. The differences in the obtained acceleration processes are discussed. Results show that bunched electron beams with full charge on the nC scale and kinetic energy in the MeV range can be produced and configurations with peak density in the range 0.5–5 × 1020 atoms/cm3 generate electrons with maximum energies. In this range, some simulations generated quasimonoenergetic bunches with ∼0.5% of the total accelerated charge and we show that the beam characteristics, process dynamics, and operational parameters are close to those expected for the blowout regime. The configurations that led to quasimonoenergetic bunches from the sub-TW SM-LWFA regime allow the use of laser systems with repetition rates in the kHz range, which can be beneficial for practical applications

    Exocomet signatures around the A-shell star Φ\Phi Leo?

    Get PDF
    We present an intensive monitoring of high-resolution spectra of the Ca {\sc ii} K line in the A7IV shell star Φ\Phi Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star β\beta Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around Φ\Phi Leo. To our knowledge, with the exception of β\beta Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that Φ\Phi Leo presents the richest environment with comet-like events known to date, second only to β\beta Pic.Comment: A&A letters, proof-correcte

    From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification

    Get PDF
    The observed variation in the calcification responses of coccolithophores to changes in carbonate chemistry paints a highly incoherent picture, particularly for the most commonly cultured "species", <i>Emiliania huxleyi</i>. The disparity between magnitude and potentially even sign of the calcification change under simulated end-of-century ocean surface chemical changes (higher <i>p</i>CO<sub>2</sub>, lower pH and carbonate saturation), raises challenges to quantifying future carbon cycle impacts and feedbacks because it introduces significant uncertainty in parameterizations used for global models. Here we compile the results of coccolithophore carbonate chemistry manipulation experiments and review how ocean carbon cycle models have attempted to bridge the gap from experiments to global impacts. Although we can rule out methodological differences in how carbonate chemistry is altered as introducing an experimental bias, the absence of a consistent calcification response implies that model parameterizations based on small and differing subsets of experimental observations will lead to varying estimates for the global carbon cycle impacts of ocean acidification. We highlight two pertinent observations that might help: (1) the degree of coccolith calcification varies substantially, both between species and within species across different genotypes, and (2) the calcification response across mesocosm and shipboard incubations has so-far been found to be relatively consistent. By analogy to descriptions of plankton growth rate vs. temperature, such as the "Eppley curve", which seek to encapsulate the net community response via progressive assemblage change rather than the response of any single species, we posit that progressive future ocean acidification may drive a transition in dominance from more to less heavily calcified coccolithophores. Assemblage shift may be more important to integrated community calcification response than species-specific response, highlighting the importance of whole community manipulation experiments to models in the absence of a complete physiological understanding of the underlying calcification process. However, on a century time-scale, regardless of the parameterization adopted, the atmospheric <i>p</i>CO<sub>2</sub> impact of ocean acidification is minor compared to other global carbon cycle feedbacks

    Expression of HLA-G in inflammatory bowel disease provides a potential way to distinguish between ulcerative colitis and Crohn's disease.

    Get PDF
    In addition to being involved in nutrient uptake, the epithelial mucosa constitute the first line of defense against microbial pathogens. A direct consequence of this physiological function is a very complex network of immunological interactions that lead to a strong control of the mucosal immune balance. The dysfunction of immunological tolerance is likely to be a cause of inflammatory bowel disease (IBD), ulcerative colitis (UC) and Crohn's disease (CD). HLA-G is a non-classical major histocompatibility complex (HLA) class I molecule, which is highly expressed by human cytotrophoblast cells. These cells play a role in immune tolerance by protecting trophoblasts from being killed by uterine NK cells. Because of the deregulation of immune system activity in IBD, as well as the immunoregulatory role of HLA-G, we have analyzed the expression of HLA-G in intestinal biopsies of patients with UC and CD. Our study shows that the differential expression of HLA-G provides a potential way to distinguish between UC and CD. Although the reason for this differential expression is unclear, it might involve a different mechanism of immune regulation. In addition, we demonstrate that in the lamina propria of the colon of patients with UC, IL-10 is strongly expressed. In conclusion, the presence of HLA-G on the surface of intestinal epithelial cell in patients with UC lends support to the notion that this molecule may serve as a regulator of mucosal immune responses to antigens of undefined origin. Thus, this different pattern of HLA-G expression may help to differentiate between the immunopathogenesis of CD and UC

    Incidence of debris discs around FGK stars in the solar neighbourhood

    Get PDF
    Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE photometry, were obtained. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the DEBRIS consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars, is complete for F stars, almost complete for G stars and contains a substantial number of K stars to draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type 0.26 (6 objects with excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49 K stars), the fraction for all three spectral types together being 0.22 (23 out of 105 stars). Uncertainties corresponding to a 95% confidence level are given in the text for all these numbers. The medians of the upper limits of L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K); the lowest values being around 4.0E-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.Comment: 31 pages, 15 figures, 10 tables, 2 appendice

    Reducing the primate pet trade: Actions for primatologists

    Get PDF
    This commentary emerged from a panel presentation at the International Primatological Society Congress in Nairobi, Kenya, 2018. The goal was to provide regional updates on the status of primate removal from habitat countries, especially for the pet trade, and develop guidelines that could help primatologists address this critical problem. The trade in live primates includes those used as pets, in entertainment, and as subjects of biomedical experimentation, but here we focus on those primates destined for the pet trade. Such transactions are a hugely lucrative business, impacting hundreds of thousands of individuals annually and affecting the survival of wild populations. Being intimately familiar with primate social behavior, life history and biology, primatologists, whether they work with captive or wild primates, are in a unique position to understand the nature of the trade and attempt to counter its effects. In addition to updating the status of the primate pet trade, we provide recommendations that may help primatologists formulate a plan to deal, locally and regionally, with illegal trafficking in live primates. General guidelines include increasing awareness of local customs, policies and laws; developing collaborative research opportunities for local people; engaging in training/informational opportunities; and instructing on how to take action when encountering illegally‐trafficked primates

    Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean Iron enrichment.

    Get PDF
    Iron supply is thought to regulate primary production in high nitrate, low chlorophyll (HNLC) regions of the sea in both the past and the present. A critical aspect of this relationship is acquisition of iron (Fe) by phytoplankton, which occurs through a complex series of extracellular reactions that are influenced by Fe chemistry and speciation. During the first in situ mesoscale Fe-enrichment experiment in the Southern Ocean (Southern Ocean iron release experiment [SOIREE]), we monitored the uptake of Fe by three size classes of plankton and their ensuing physiological response to the Fe enrichment. Rates of Fe uptake from both inorganic Fe (Fe') and organic Fe complexes (FeL) were initially fast, indicative of Fe-limitation. After Fe enrichment phytoplankton down-regulated Fe uptake and optimized physiological performance, but by day 12 they had greatly increased their capacity to acquire Fe from FeL. The increase in Fe uptake from FeL coincided with a sixfold decrease in Fe' that followed the production of Fe-binding organic ligands. Phytoplankton were able to use organically bound Fe at rates sufficient to maintain net growth for more than 42 d. Adaptation to such shifts in Fe chemistry may contribute to bloom longevity in these polar HNLC waters

    Quantifying Collaboration Quality in Face-to-Face Classroom Settings Using MMLA

    Get PDF
    Producción CientíficaThe estimation of collaboration quality using manual observation and coding is a tedious and difficult task. Researchers have proposed the automation of this process by estimation into few categories (e.g., high vs. low collaboration). However, such categorical estimation lacks in depth and actionability, which can be critical for practitioners. We present a case study that evaluates the feasibility of quantifying collaboration quality and its multiple sub-dimensions (e.g., collaboration flow) in an authentic classroom setting. We collected multimodal data (audio and logs) from two groups collaborating face-to-face and in a collaborative writing task. The paper describes our exploration of different machine learning models and compares their performance with that of human coders, in the task of estimating collaboration quality along a continuum. Our results show that it is feasible to quantitatively estimate collaboration quality and its sub-dimensions, even from simple features of audio and log data, using machine learning. These findings open possibilities for in-depth automated quantification of collaboration quality, and the use of more advanced features and algorithms to get their performance closer to that of human coders.European Union via the European Regional Development Fund and in the context of CEITER and Next-Lab (Horizon 2020 Research and Innovation Programme, grant agreements no. 669074 and 731685)Junta de Castilla y León (Project VA257P18)Ministerio de Ciencia, Innovación y Universidades (Project TIN2017-85179-C3-2-R

    Designing the EMBeRS summer school: Connecting stakeholders in learning, teaching and research

    Get PDF
    © 2017 Asia-Pacific Society for Computers in Education. All rights reserved. In this paper, we describe our research investigating design, teaching and learning aspects of the EMBeRS Summer School. In 2016, thirteen graduate Environmental Science students participated in a ten-day Summer School to learn about interdisciplinary approaches to researching socio-environmental systems. Using the Employing Model-Based Reasoning in Socio-Environmental Synthesis (EMBeRS) approach, students learned about wicked problems, team composition, systems thinking and modelling, stakeholder management, and communication. They applied this approach to their own research, as well as to a case study, in order to, ultimately, further the EMBeRS approach in their own institutions. Learning sciences researchers, environmental science instructors and learners collaborated in design, teaching, and learning during the 2016 Summer School in order to co-create and co-configure the tasks, social arrangements, and tools for learning, teaching and design. This paper identifies four examples of connections between the stakeholders (researchers, instructors and learners), the tools that facilitated the connection, and the implications for learning, teaching and design
    corecore