10 research outputs found

    Bayesian Evidence and Model Selection

    Full text link
    In this paper we review the concepts of Bayesian evidence and Bayes factors, also known as log odds ratios, and their application to model selection. The theory is presented along with a discussion of analytic, approximate and numerical techniques. Specific attention is paid to the Laplace approximation, variational Bayes, importance sampling, thermodynamic integration, and nested sampling and its recent variants. Analogies to statistical physics, from which many of these techniques originate, are discussed in order to provide readers with deeper insights that may lead to new techniques. The utility of Bayesian model testing in the domain sciences is demonstrated by presenting four specific practical examples considered within the context of signal processing in the areas of signal detection, sensor characterization, scientific model selection and molecular force characterization.Comment: Arxiv version consists of 58 pages and 9 figures. Features theory, numerical methods and four application

    Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

    Get PDF
    Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies

    High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    Get PDF
    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1–2 km), and high spatial resolution (∼ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH_4, H_2S, NH_3, NO_2, and SO_2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions

    High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    Get PDF
    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1–2 km), and high spatial resolution (∼ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH_4, H_2S, NH_3, NO_2, and SO_2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions

    Application of Landsat 8 for Monitoring Impacts of Wastewater Discharge on Coastal Water Quality

    Get PDF
    In this study, we examine the capabilities of the Landsat 8 Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS), and Aqua Moderate resolution Imaging Spectroradiometer (MODIS) for monitoring the environmental impact of the 2015 Hyperion Treatment Plant (HTP) wastewater diversion in Santa Monica Bay, California. From 21 September−2 November 2015, the HTP discharged ~39 × 103 m3 h−1 of treated wastewater into Santa Monica Bay through their emergency 1-mile outfall pipe. Multi-sensor satellite remote sensing was employed to determine the biophysical impact of discharged wastewater in the shallow nearshore environment. Landsat 8 TIRS observed decreased sea surface temperatures (SST) associated with the surfacing wastewater plume. Chlorophyll-a (chl-a) concentrations derived from Landsat 8 OLI and Aqua MODIS satellite sensors were used to monitor the biological response to the addition of nutrient-rich wastewater. In situ chl-a and in situ remote sensing reflectance (Rrs) were measured before, during, and after the diversion event. These in situ data were paired with coincident OLI and MODIS satellite data to yield a more comprehensive view of the changing conditions in Santa Monica Bay due to the wastewater diversion. Two new local chl-a algorithms were empirically derived using in situ data for the OLI and MODIS sensors. These new local chl-a algorithms proved more accurate at measuring chl-a changes in Santa Monica Bay compared to the standard open ocean OC2 and OC3M algorithms, and the regional southern California CALFIT algorithm, as validated by in situ chl-a measurements. Additionally, the local OLI algorithm outperformed the local MODIS algorithm, especially in the nearshore region. A time series of chl-a, as detected by the local OLI chl-a algorithm, illustrated a very large increase in chl-a concentrations during the wastewater diversion, and a subsequent decrease in chl-a after the diversion. Our study demonstrates the capability of using Landsat 8 TIRS and OLI sensors for the monitoring of SST and surface chl-a concentrations at high spatial resolution in nearshore waters and highlights the value of these sensors for assessing the environmental effects of wastewater discharge in a coastal environment
    corecore