90 research outputs found

    Toxicity and Molecular Identification of Green Toadfish Lagocephalus lunaris Collected from Kyushu Coast, Japan

    Get PDF
    Green toadfish Lagocephalus lunaris inhabits tropical and subtropical seas and contains high tetrodotoxin (TTX) levels in the muscle as well as liver and gonad. In 2008 to 2009, food poisoning due to ingesting L. lunais occurred in Western Japan. Five specimens of green toadfish caught in Kyushu coast, Japan, were analyzed for toxicity, toxins, and species identification. All five specimens were toxic by bioassay. Comparing the maximum toxicity in tissues, ovary contained the most toxin (1810 mouse unit [MU]/g), followed by liver (341 MU/g), muscle (135 MU/g), skin (79 MU/g), and intestine (72 MU/g). Liquid chromatography/mass spectrometry analysis revealed that TTX was the major toxin. Nucleotide sequence analysis of the 16S rRNA gene fragment of muscle mitochondrial DNA indicated that partial sequences of PCR products of four specimens were identical with that of L. lunaris. The sequence of one specimen was indistinguishable from that of the brown-backed toadfish Lagocephalus wheeleri, a nontoxic species

    Δραστηριότητες της Ένωσης

    Get PDF
    Περιέχει το πλήρες κείμεν

    Rho and Anillin-dependent Control of mDia2 Localization and Function in Cytokinesis

    Get PDF
    Diaphanous-related formin, mDia, is an actin nucleation/polymerization factor functioning downstream of the small GTPase Rho. We found that, in addition to the Rho GTPase-mediated activation, the interaction between mDia2 and anillin is required for the localization and function of mDia2 in cytokinesis

    ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles

    Get PDF
    Rho-associated kinase (ROCK) I mediates signaling from Rho to the actin cytoskeleton. To investigate the in vivo functions of ROCK-I, we generated ROCK-I–deficient mice. Loss of ROCK-I resulted in failure of eyelid closure and closure of the ventral body wall, which gave rise to the eyes open at birth and omphalocele phenotypes in neonates. Most ROCK-I−/− mice died soon after birth as a result of cannibalization of the omphalocele by the mother. Actin cables that encircle the eye in the epithelial cells of the eyelid were disorganized and accumulation of filamentous actin at the umbilical ring was impaired, with loss of phosphorylation of the myosin regulatory light chain (MLC) at both sites, in ROCK-I−/− embryos. Stress fiber formation and MLC phosphorylation induced by EGF were also attenuated in primary keratinocytes from ROCK-I−/− mice. These results suggest that ROCK-I regulates closure of the eyelids and ventral body wall through organization of actomyosin bundles

    Synergistic effect of sulfonation followed by precipitation of amorphous calcium phosphate on the bone-bonding strength of carbon fiber reinforced polyetheretherketone

    Get PDF
    Sulfonation and applications of amorphous calcium phosphate are known to make polyetheretherketone (PEEK) bioactive. Sulfonation followed by precipitation of amorphous calcium phosphate (AN-treatment) may provide PEEK with further bone-bonding strength. Herein, we prepared a carbon-fiber-reinforced PEEK (CPEEK) with similar tensile strength to cortical bone and a CPEEK subjected to AN-treatment (CPEEK-AN). The effect of AN-treatment on the bone-bonding strength generated at the interface between the rabbit’s tibia and a base material was investigated using a detaching test at two time-points (4 and 8 weeks). At 4 weeks, the strength of CPEEK-AN was significantly higher than that of CPEEK due to the direct bonding between the interfaces. Between 4 and 8 weeks, the different bone forming processes showed that, with CPEEK-AN, bone consolidation was achieved, thus improving bone-bonding strength. In contrast, with CPEEK, a new bone was absorbed mainly on the interface, leading to poor strength. These observations were supported by an in vitro study, which showed that pre-osteoblast on CPEEK-AN caused earlier maturation and mineralization of the extracellular matrix than on CPEEK. Consequently, AN-treatment, comprising a combination of two efficient treatments, generated a synergetic effect on the bonding strength of CPEEK

    Clinical Application of Computer-Aided Diagnostic System for Harmonious Introduction of Complementary Dialysis Therapy

    Get PDF
    In chronic peritoneal dialysis (PD) therapy, peritoneal permeability is gradually enhanced over the duration of the therapeutic course, leading to a grave decline in the therapeutic efficiency. In recent years, a novel therapy (CD therapy), which integrates PD therapy with hemodialysis therapy, is being applied to end-stage PD patients to complement the decline of therapeutic efficiency caused by the grave degeneration of the peritoneal tissue. To realize a harmonious introduction of the CD therapy, this study developed a useful index (KAu/c), which evaluates both therapeutic efficiency and degeneration of peritoneal tissue. Using a mathematical model and KAu/c, we were able to validate the therapeutic efficiency in the PD patients, and, in one case, propose a better prescription for the patient by employing the CD therapy. The clinical implementation of this methodology is indispensable with regard to expanding the therapeutic monitoring system for renal replacement therapy

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research
    corecore